Electronic Supplementary Information for

Isolation and Characterization of Copper(III) Trifluoromethyl

Complexes and Reactivity Studies of Aerobic Trifluoromethylation of

Arylboronic Acids

Song-Lin Zhang* and Wen-Feng Bie

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China

E-mail: slzhang@jiangnan.edu.cn

Table of Contents

1. General experimental details	·S1
2. Procedures for the synthesis and characterization of complexes 1-5	S1
3. NMR spectra for the key complexes 2-4	S5
4. Crystallographic study	·S10
5. ¹⁹ F NMR monitoring of the reaction course	S42
6. Reaction mechanism relevant	·S44
7. Reactivity studies of 2 and 3 with boronic acids	-S45
7.1 Optimization of conditions for reaction of 3 with 6a (Table 1)	-S45
7.2 General procedures for reaction of 3 with various boronic acids (Table 2)-	-S47
7.3 Reaction of 2 with boronic acids	-S50

1. General experimental details

All reactants and solvents were purchased commercially except complex **1**. CH_2Cl_2 and DMF solvents were simply dried over Na_2SO_4 before use. Other reactants were used as received without further purification. All the reactions were performed in a Schlenk tube under N_2 or O_2 atmosphere which was realized through evacuation/backfill techniques three times. For reactions involving AgF, a tinfoil was used to wrap the Schlenk tube to avoid the interference of visible light. NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer. Chemical shifts are reported in ppm and referenced to residual solvent peaks or TMS. Coupling constants are reported in Hertz. Elemental analyses were performed by the Analytic Laboratory of Jiangnan University.

2. Procedures for the synthesis and characterization of complexes 1-5

(PPh₃)₃CuBr

In an Erlenmeyer flask, methanol (150 mL) was heated to boiling and triphenyl phosphine (9.98 g, 38.1 mmol) was added slowly to the stirring methanol. After complete dissolution, $CuBr_2$ (2.24 g, 10.0 mmol) was slowly added in small portions. Upon addition of copper bromide, a white precipitate was formed. After all of $CuBr_2$ added, the mixture was stirred for 30 min and then cooled down to room temperature. The precipitate was filtered and washed with ethanol and ether, and dried in vacuum to give (PPh_3)_3CuBr as a white powder in a yield of 7.876 g (85%).

(phen)Cu(PPh₃)Br (1)

In an Erlenmeyer flask, $(PPh_3)_3CuBr$ (4.65 g, 5 mmol) was dissolved in 50 mL of chloroform at room temperature. 1,10-phenanthroline (900 mg, 5 mmol) was then added to the reaction mixture. The colorless solution immediately turned orange. The contents of the flask were allowed to stir at room temperature for 30 min and the solvent was removed in vacuo. The resulting orange solid was dissolved in 80 mL of dichloromethane and layered with 200 mL of ether. The precipitate was collected on the Buchner funnel, washed with 100mL of ether and dried in vacuum to give (phen)Cu(PPh_3)Br (1) as an orange solid in a yield of 2.573 g (88%).

$[(phen)Cu^{I}(PPh_{3})_{2}]^{+}[Cu^{III}(CF_{3})_{4}]^{-}(2) \text{ and } (phen)Cu^{III}(CF_{3})_{3}(3)$

Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil (to avoid possible interference of visible light with AgF) was added phenCu(PPh₃)Br (586 mg, 1 mmol,) and AgF (381 mg, 3 mmol) at room temperature. The air in the Schlenk tube was evacuated and backfilled with dry nitrogen three times. CH₂Cl₂ (10 mL) was then added by syringe and the contents were vigorously stirred for 30 minutes. TMSCF₃ (426 mg, 3 mmol) was then slowly added by syringe. The resulting mixture was further stirred for 18 hours at room temperature under nitrogen. The crude mixture was separated by filtration and washed with CH₂Cl₂ (10 mL). The combined filtrate and the washings were evaporated to dryness. The solid residue was treated with CH₂Cl₂ (10 mL) and evaporated with silica gel. The crude mixture was purified by flash silica gel column chromatography under air with petroleum ether (PE) /ethylacetate (EA) (v/v = 2:1) as eluent to give phenCu(CF₃)₃(**3**) as yellow solid in a yield of 140 mg (31%). Then the flash silica gel column chromatography was washed with CH₂Cl₂. The washings were reduced in volume on a rotary evaporator to give yellow solid. The solid residue was treated with CH₂Cl₂ (3 mL) followed by hexane (6 mL) and stored in refrigerator. Yellow crystals were separated by filtration, washed with hexane (4 x 1 mL), and dried under vacuum. Complex 2 was thus obtained as yellow solid in a yield of 164 mg (30%). Complexes 2 and 3 were stable under air for at least two weeks.

 $[(phen)Cu^{I}(PPh_{3})_{2}]^{+}[Cu^{III}(CF_{3})_{4}]^{-}(2): {}^{1}H NMR (400 MHz, CD_{2}Cl_{2}): \delta 8.74 (d, J = 4.4 Hz, 2H), 8.50 (d, J = 8.0 Hz, 2H), 8.03 (s, 2H), 7.75 (dd, J = 7.9, 4.7 Hz, 2H), 7.38 (t, J = 7.6 Hz, 6H), 7.21 (t, J = 7.6 Hz, 12H), 7.14 (d, J = 7.2 Hz, 12H). {}^{19}F NMR (376 MHz, CD_{2}Cl_{2}) \delta: -34.6 (s). {}^{31}P NMR (162 MHz, CD_{2}Cl_{2}) \delta: 3.0 (br). Anal. Calc. for C_{52}H_{38}F_{12}N_{2}P_{2}Cu_{2}: C, 56.37, H, 3.46, N, 2.53; Found: C, 56.77, H, 3.69, N, 2.73.$

(**phen**)Cu^{III}(CF₃)₃ (**3**): ¹H NMR (400 MHz, CD₂Cl₂): δ 9.47 (dd, J = 4.8, 1.3 Hz, 2H), 8.67 (dd, J = 8.2, 1.4 Hz, 2H), 8.10 (s, 2H), 8.05 (dd, J = 8.2, 4.8 Hz, 2H). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ -24.4 (septet, J = 9.6 Hz), -37.4 (quartet, J = 9.6 Hz). Anal. Calc. for C₁₅H₈Cu₁F₉N₂: C, 39.97, H, 1.79, N, 6.21; Found: C, 40.36, H, 2.00, N, 6.33.

An alternative synthesis of (phen) $Cu^{III}(CF_3)_3$ (3) and (bpy) $Cu^{III}(CF_3)_3$ (4): Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil (to avoid possible interference of visible light with AgF) was added CuI (190 mg, 1 mmol), phen (180 mg, 1 mmol) or bpy (156 mg, 1 mmol) and AgF (508 mg, 4 mmol) at room temperature. The tube was then sealed with Teflon. The air in the tube was evacuated and backfilled with dry nitrogen three times. DMF (3 mL) was added by syringe and the contents were vigorously stirred for 30 minutes. CF₃SiMe₃ (852 mg, 6 mmol) was subsequently slowly added into the tube by syringe. The resulting mixture was further stirred for 18 hours at room temperature under nitrogen. The crude mixture was diluted with CH₂Cl₂(10 mL), separated by filtration and washed with CH₂Cl₂(5 mL). The combined filtrate and the washings were washed with water (5 mL) three times. Then the organic layer was evaporated with silica gel. The crude mixture was purified by flash column chromatography on silica gel to give (phen)Cu(CF₃)₃ (3) (eluent: PE/EA (v/v = 2:1)) as yellow solids in a yield of 283 mg (63 %) or (bpy)Cu(CF₃)₃ (4) (eluent: CH₂Cl₂) as yellow solids in a yield of 303 mg (71 %).

(**bpy**)**Cu**(**CF**₃)₃ (4): ¹H NMR (400 MHz, d⁶-DMSO) δ : 9.25 (d, J = 5.0 Hz, 2H), 8.81 (d, J = 8.1 Hz, 2H), 8.39 (td, J = 7.9, 1.4 Hz, 2H), 7.92 (dd, J = 6.8, 5.5 Hz, 2H). ¹⁹F NMR (376 MHz, d⁶-DMSO) δ : -24.0 (sept, J = 9.2 Hz), -36.1 (q, J = 9.2 Hz).

$[(Ph_3P)_3Ag_2Br_2]$ (5)

Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil was added phenCu(PPh₃)Br (586 mg, 1 mmol,) and AgF (381 mg, 3 mmol) at room temperature. The air in the Schlenk was evacuated and backfilled with dry nitrogen three times. CH_2Cl_2 (10 mL) was then added into the tube by syringe. The resulting mixture was stirred at room temperature for 18 h under nitrogen. The resulting mixture was separated by filtration and washed with CH_2Cl_2 (5 mL).The combined filtrate and the washings were evaporated to dryness. The solid residue was treated

with CH_2Cl_2 (5 mL) followed by hexane (15 mL). The pale yellow crystals were separated by filtration, washed with hexane (4 x 5 mL), and dried under vacuum. Crystals of complex [(Ph₃P)₃Ag₂Br₂] (5) suitable for X-ray diffraction analysis were then obtained by dissolving the solid in CH_2Cl_2 /hexane mixed solvent and stored in refrigerator for several days. ³¹P NMR (162 MHz, CDCl₃): δ 5.8 (s).

3. NMR Spectra for the key complexes 2-4

Figure S1. ¹H NMR (400 MHz, CD_2Cl_2) of complex **2** (The two insets show the fine splitting of phen and PPh₃ respectively).

Figure S2. ¹⁹F NMR (376 MHz, CD₂Cl₂) of complex 2.

Figure S3. ³¹P NMR (162 MHz, CD₂Cl₂) of complex 2.

Figure S4. ¹H NMR (400 MHz, CD₂Cl₂) of complex **3** (the inset shows fine splitting of phen).

Figure S5. ¹⁹F NMR (376 MHz, CD_2Cl_2) of complex **3** (the two insets show fine splitting of the two signals).

Figure S6. ¹H NMR (400 MHz, d^6 -DMSO) of complex **4** (the inset shows fine splitting of bpy). Signals at 2.51 and 3.34 ppm are resonances of residual DMSO.

Figure S7. ¹⁹F NMR (376 MHz, d^6 -DMSO) of complex 4 (the two insets show fine splitting of the two signals).

Figure S8. ³¹P NMR (162 MHz, CDCl₃) of complex 5.

4. Crystallographic study

Crystals of complexes 2, 3 and 5 suitable for X-ray crystallographic analyses were grown by dissolving 2, 3 or 5 in a mixed solvent of CH_2Cl_2 /hexane and then stored in the refrigerator for 2-3 days. CCDCs 1402421, 1402422 and 1402423 contain the detailed information about the crystallographic study and crystal structures of complexes 3, 2 and 5. The following sections show some key information.

(1) Complex **3**:

Crystal data for complex 3

$\underline{C_{15}H_8CuF_9N_2}$	
$M_r = 450.77$	$D_{\rm x} = 1.819 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Melting point: ? K
Hall symbol: <u>-P 2ac 2ab</u>	<u>Mo <i>K</i>\alpha</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>11.1138 (9)</u> Å	Cell parameters from <u>1382</u> reflections
b = 16.303 (2) Å	$\theta = \underline{3.2} - \underline{23.5}^{\circ}$
c = 18.1646 (17) Å	$\mu = 1.42 \text{ mm}^{-1}$

V = 3291.3 (6) Å ³	T = 223 K
$Z = \underline{8}$	Plate, yellow
F(000) = 1776	$\underline{0.35} \times \underline{0.30} \times \underline{0.20}$ mm

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.73286 (8)	0.12077 (5)	0.33566 (5)	0.0379 (4)	
F1	0.7020 (5)	-0.0256 (3)	0.4113 (3)	0.0676 (15)	
F2	0.7995 (6)	-0.0434 (3)	0.3113 (3)	0.0801 (18)	
F3	0.6091 (6)	-0.0255 (4)	0.3074 (4)	0.102 (2)	
F4	0.8932 (11)	0.0862 (8)	0.2300 (6)	0.080 (4)*	0.50
F4A	0.9064 (11)	0.1255 (8)	0.2318 (7)	0.073 (4)*	0.50
F5	0.7406 (7)	0.0456 (4)	0.1965 (3)	0.097 (2)	
F6	0.7472 (6)	0.1743 (4)	0.1895 (3)	0.0789 (18)	
F7	0.8391 (5)	0.2704 (3)	0.2891 (3)	0.0709 (15)	
F8	0.6447 (5)	0.2734 (3)	0.2945 (3)	0.0724 (15)	
F9	0.7531 (4)	0.2792 (3)	0.3928 (3)	0.0597 (14)	
N1	0.8818 (6)	0.1163 (4)	0.4152 (3)	0.0410 (15)	
N2	0.6432 (5)	0.1364 (4)	0.4280 (3)	0.0425 (16)	
C1	0.9997 (7)	0.1047 (5)	0.4082 (5)	0.052 (2)	
H1	1.0315	0.0972	0.3608	0.062*	
C2	1.0786 (9)	0.1032 (5)	0.4681 (7)	0.068 (3)	
H2	1.1620	0.0979	0.4609	0.081*	
C3	1.0325 (9)	0.1095 (5)	0.5362 (6)	0.063 (3)	
H3	1.0839	0.1056	0.5771	0.076*	
C4	0.9097 (9)	0.1215 (5)	0.5472 (5)	0.053 (2)	
C5	0.8528 (13)	0.1305 (6)	0.6176 (5)	0.076 (3)	

Н5	0.9002	0.1294	0.6605	0.091*	
C6	0.7329 (12)	0.1404 (6)	0.6237 (6)	0.077 (3)	
Н6	0.6985	0.1449	0.6708	0.092*	
C7	0.6576 (9)	0.1442 (5)	0.5614 (5)	0.058 (2)	
C8	0.5343 (10)	0.1579 (6)	0.5634 (6)	0.072 (3)	
H8	0.4971	0.1656	0.6093	0.087*	
C9	0.4651 (8)	0.1605 (6)	0.5019 (6)	0.071 (3)	
Н9	0.3816	0.1692	0.5047	0.085*	
C10	0.5241 (8)	0.1495 (6)	0.4324 (5)	0.064 (2)	
H10	0.4784	0.1515	0.3889	0.077*	
C11	0.7102 (8)	0.1349 (4)	0.4915 (4)	0.046 (2)	
C12	0.8381 (7)	0.1240 (4)	0.4846 (4)	0.0416 (18)	
C13	0.7114 (8)	0.0015 (5)	0.3392 (5)	0.055 (2)	
C14	0.7457 (8)	0.2398 (6)	0.3260 (4)	0.049 (2)	
C15	0.7781 (9)	0.1099 (6)	0.2331 (5)	0.061 (3)	

Geometric parameters (Å, °)

Cu1—C15	1.939 (10)	C1—H1	0.9400
Cu1—C14	1.953 (9)	C2—C3	1.342 (14)
Cu1—C13	1.960 (9)	C2—H2	0.9400
Cu1—N2	1.968 (6)	C3—C4	1.393 (14)
Cu1—N1	2.198 (6)	С3—Н3	0.9400
F1—C13	1.386 (9)	C4—C12	1.389 (11)
F2—C13	1.324 (10)	C4—C5	1.435 (15)
F3—C13	1.349 (10)	C5—C6	1.346 (15)
F4—C15	1.337 (15)	С5—Н5	0.9400
F4A—C15	1.449 (16)	C6—C7	1.410 (14)
F5—C15	1.310 (11)	С6—Н6	0.9400

F6—C15	1.358 (10)	С7—С8	1.389 (14)
F7—C14	1.333 (9)	C7—C11	1.405 (12)
F8—C14	1.374 (9)	C8—C9	1.357 (14)
F9—C14	1.376 (9)	С8—Н8	0.9400
N1—C1	1.330 (10)	C9—C10	1.433 (12)
N1—C12	1.357 (10)	С9—Н9	0.9400
N2—C10	1.343 (10)	C10—H10	0.9400
N2—C11	1.373 (10)	C11—C12	1.438 (12)
C1—C2	1.397 (12)		
C15—Cu1—C14	89.2 (4)	C9—C8—C7	122.9 (9)
C15—Cu1—C13	88.4 (4)	С9—С8—Н8	118.6
C14—Cu1—C13	175.7 (3)	С7—С8—Н8	118.6
C15—Cu1—N2	164.3 (4)	C8—C9—C10	117.5 (8)
C14—Cu1—N2	89.1 (3)	С8—С9—Н9	121.2
C13—Cu1—N2	92.2 (3)	С10—С9—Н9	121.2
C15—Cu1—N1	115.7 (4)	N2—C10—C9	121.5 (8)
C14—Cu1—N1	92.1 (3)	N2—C10—H10	119.3
C13—Cu1—N1	92.1 (3)	С9—С10—Н10	119.3
N2—Cu1—N1	79.9 (3)	N2—C11—C7	122.1 (8)
C1—N1—C12	117.0 (7)	N2—C11—C12	117.7 (6)
C1—N1—Cu1	133.2 (6)	C7—C11—C12	120.2 (8)
C12—N1—Cu1	109.7 (5)	N1—C12—C4	123.6 (8)
C10—N2—C11	119.2 (7)	N1—C12—C11	116.5 (6)
C10—N2—Cu1	124.7 (6)	C4—C12—C11	119.9 (8)
C11—N2—Cu1	116.1 (5)	F2—C13—F3	106.2 (7)
N1—C1—C2	123.2 (9)	F2—C13—F1	104.0 (7)
N1—C1—H1	118.4	F3—C13—F1	103.8 (7)
C2—C1—H1	118.4	F2—C13—Cu1	116.5 (6)

C3—C2—C1	118.5 (9)	F3—C13—Cu1	114.3 (6)
C3—C2—H2	120.8	F1—C13—Cu1	110.9 (5)
C1—C2—H2	120.8	F7—C14—F8	106.1 (7)
C2—C3—C4	121.1 (8)	F7—C14—F9	102.8 (7)
С2—С3—Н3	119.5	F8—C14—F9	103.3 (6)
С4—С3—Н3	119.5	F7—C14—Cu1	118.3 (6)
C12—C4—C3	116.6 (9)	F8—C14—Cu1	112.0 (6)
C12—C4—C5	118.3 (9)	F9—C14—Cu1	112.9 (5)
C3—C4—C5	125.0 (9)	F5—C15—F4	93.0 (9)
C6—C5—C4	121.4 (9)	F5—C15—F6	104.0 (8)
С6—С5—Н5	119.3	F4—C15—F6	116.2 (10)
C4—C5—H5	119.3	F5—C15—F4A	116.5 (10)
C5—C6—C7	121.8 (10)	F4—C15—F4A	27.0 (7)
С5—С6—Н6	119.1	F6—C15—F4A	95.9 (8)
С7—С6—Н6	119.1	F5—C15—Cu1	118.6 (7)
C8—C7—C11	116.8 (9)	F4—C15—Cu1	108.3 (8)
C8—C7—C6	124.9 (10)	F6—C15—Cu1	115.1 (7)
C11—C7—C6	118.3 (10)	F4A—C15—Cu1	104.8 (7)

(2) Complex **2**

Some disorders of the fluorine atoms were observed in the crystal structure of complex **2**.

Crystal data for complex 2

$C_{52}H_{38}Cu_2F_{12}N_2P_2{}^{\bullet}CHCl_3$	
$M_r = 1227.23$	$D_{\rm x} = 1.580 {\rm Mg}{\rm m}^{-3}$
Monoclinic, <u>P2₁/n</u>	Melting point: <u>?</u> K
Hall symbol: <u>-P 2yn</u>	<u>Mo <i>K</i>\alpha</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>14.4553 (12)</u> Å	Cell parameters from 9023 reflections
b = 19.5245 (15) Å	$\theta = \underline{2.5} - \underline{29.7}^{\circ}$
c = 18.3344 (15) Å	$\mu = 1.13 \text{ mm}^{-1}$
$\beta = \underline{94.601(2)}^{\circ}$	T = 273 K
V = 5157.9 (7) Å ³	Block, yellow
$Z = \underline{4}$	$\underline{0.20} \times \underline{0.15} \times \underline{0.10} \text{ mm}$
F(000) = 2472	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

<u>(Å²)</u>

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu1	0.62946 (4)	0.56005 (3)	0.29358 (3)	0.0274 (2)	
Cu2	0.88867 (5)	0.38884 (4)	0.71689 (4)	0.0400 (2)	
P1	0.58315 (9)	0.53579 (7)	0.17614 (7)	0.0289 (3)	
P2	0.68626 (9)	0.66245 (7)	0.33057 (7)	0.0283 (3)	
N1	0.7014 (3)	0.4784 (2)	0.3440 (2)	0.0303 (9)	
N2	0.5250 (3)	0.5194 (2)	0.3545 (3)	0.0319 (9)	
C1	0.4759 (4)	0.4865 (3)	0.1728 (3)	0.0347 (11)	
C2	0.4766 (4)	0.4262 (3)	0.2137 (3)	0.0401 (13)	
H2	0.5319	0.4106	0.2374	0.048*	
C3	0.3954 (5)	0.3893 (3)	0.2191 (4)	0.0518 (17)	
Н3	0.3961	0.3498	0.2474	0.062*	
C4	0.3153 (5)	0.4110 (4)	0.1833 (6)	0.069 (2)	
H4	0.2614	0.3854	0.1862	0.082*	
C5	0.3123 (5)	0.4707 (4)	0.1424 (6)	0.077 (3)	
Н5	0.2565	0.4858	0.1191	0.093*	
C6	0.3945 (4)	0.5085 (4)	0.1364 (5)	0.0543 (17)	
Н6	0.3936	0.5480	0.1080	0.065*	
C7	0.6609 (4)	0.4843 (3)	0.1255 (3)	0.0324 (11)	
C8	0.6298 (5)	0.4320 (3)	0.0777 (4)	0.0459 (14)	
H8	0.5671	0.4206	0.0728	0.055*	
С9	0.6922 (6)	0.3970 (4)	0.0375 (4)	0.0555 (17)	
Н9	0.6709	0.3621	0.0060	0.067*	
C10	0.7849 (5)	0.4133 (4)	0.0439 (4)	0.0545 (17)	
H10	0.8260	0.3905	0.0158	0.065*	
C11	0.8170 (5)	0.4646 (4)	0.0928 (4)	0.0518 (16)	
H11	0.8800	0.4750	0.0982	0.062*	

C12	0.7560 (4)	0.4998 (3)	0.1332 (4)	0.0417 (13)	
H12	0.7779	0.5338	0.1655	0.050*	
C13	0.5566 (4)	0.6092 (3)	0.1155 (3)	0.0336 (11)	
C14	0.5106 (5)	0.6642 (3)	0.1445 (4)	0.0463 (14)	
H14	0.4934	0.6619	0.1922	0.056*	
C15	0.4902 (5)	0.7225 (4)	0.1028 (5)	0.0584 (18)	
H15	0.4570	0.7582	0.1218	0.070*	
C16	0.5196 (5)	0.7273 (4)	0.0325 (4)	0.0552 (18)	
H16	0.5080	0.7668	0.0048	0.066*	
C17	0.5658 (5)	0.6730 (4)	0.0047 (4)	0.0553 (17)	
H17	0.5850	0.6757	-0.0424	0.066*	
C18	0.5844 (4)	0.6143 (3)	0.0458 (3)	0.0413 (13)	
H18	0.6160	0.5781	0.0260	0.050*	
C19	0.7841 (4)	0.6950 (3)	0.2840 (3)	0.0317 (11)	
C20	0.7769 (4)	0.6944 (3)	0.2086 (3)	0.0403 (13)	
H20	0.7240	0.6765	0.1833	0.048*	
C21	0.8480 (5)	0.7205 (4)	0.1698 (4)	0.0532 (17)	
H21	0.8418	0.7204	0.1190	0.064*	
C22	0.9272 (5)	0.7464 (4)	0.2060 (5)	0.0583 (19)	
H22	0.9746	0.7637	0.1800	0.070*	
C23	0.9356 (5)	0.7465 (4)	0.2818 (5)	0.0578 (19)	
H23	0.9894	0.7631	0.3068	0.069*	
C24	0.8635 (4)	0.7216 (3)	0.3208 (4)	0.0459 (15)	
H24	0.8689	0.7229	0.3717	0.055*	
C25	0.6026 (4)	0.7328 (3)	0.3194 (3)	0.0340 (11)	
C26	0.5107 (4)	0.7189 (3)	0.3312 (4)	0.0457 (15)	
H26	0.4947	0.6756	0.3473	0.055*	
C27	0.4430 (5)	0.7679 (4)	0.3196 (5)	0.0590 (19)	

H27	0.3817	0.7575	0.3272	0.071*	
C28	0.4655 (5)	0.8327 (4)	0.2968 (4)	0.0542 (17)	
H28	0.4199	0.8659	0.2879	0.065*	
C29	0.5572 (5)	0.8471 (3)	0.2873 (4)	0.0557 (17)	
H29	0.5734	0.8909	0.2731	0.067*	
C30	0.6247 (4)	0.7985 (3)	0.2984 (4)	0.0437 (14)	
H30	0.6860	0.8096	0.2918	0.052*	
C31	0.7286 (4)	0.6656 (3)	0.4267 (3)	0.0347 (12)	
C32	0.7911 (4)	0.6158 (3)	0.4533 (4)	0.0452 (14)	
H32	0.8101	0.5822	0.4218	0.054*	
C33	0.8254 (6)	0.6151 (4)	0.5261 (4)	0.063 (2)	
Н33	0.8683	0.5821	0.5430	0.075*	
C34	0.7955 (7)	0.6640 (5)	0.5732 (4)	0.074 (3)	
H34	0.8161	0.6628	0.6225	0.089*	
C35	0.7355 (7)	0.7144 (5)	0.5473 (5)	0.073 (3)	
Н35	0.7170	0.7480	0.5791	0.088*	
C36	0.7020 (5)	0.7158 (4)	0.4744 (4)	0.0513 (16)	
H36	0.6616	0.7505	0.4573	0.062*	
C37	0.7891 (4)	0.4587 (3)	0.3391 (3)	0.0402 (13)	
H37	0.8255	0.4834	0.3087	0.048*	
C38	0.8285 (5)	0.4031 (4)	0.3773 (4)	0.0516 (16)	
H38	0.8899	0.3909	0.3725	0.062*	
C39	0.7751 (5)	0.3662 (3)	0.4224 (4)	0.0490 (15)	
H39	0.8004	0.3289	0.4485	0.059*	
C40	0.6837 (5)	0.3849 (3)	0.4288 (3)	0.0397 (13)	
C41	0.6233 (6)	0.3482 (3)	0.4730 (4)	0.0530 (17)	
H41	0.6459	0.3107	0.5002	0.064*	
C42	0.5342 (5)	0.3674 (3)	0.4757 (4)	0.0518 (16)	

H42	0.4960	0.3419	0.5039	0.062*	
C43	0.4965 (4)	0.4256 (3)	0.4366 (3)	0.0409 (13)	
C44	0.4040 (5)	0.4466 (4)	0.4374 (4)	0.0513 (17)	
H44	0.3636	0.4231	0.4654	0.062*	
C45	0.3742 (4)	0.5011 (3)	0.3974 (4)	0.0513 (17)	
H45	0.3127	0.5153	0.3974	0.062*	
C46	0.4353 (4)	0.5363 (3)	0.3561 (4)	0.0405 (13)	
H46	0.4129	0.5734	0.3282	0.049*	
C47	0.5545 (4)	0.4639 (3)	0.3936 (3)	0.0307 (11)	
C48	0.6491 (4)	0.4425 (2)	0.3889 (3)	0.0300 (11)	
C49	0.8224 (6)	0.3259 (5)	0.6459 (5)	0.071 (2)	
C50	0.9308 (7)	0.4407 (6)	0.6340 (7)	0.091 (3)	
C51	0.9683 (7)	0.4402 (4)	0.7835 (7)	0.086 (3)	
C52	0.8212 (7)	0.3498 (5)	0.7918 (5)	0.074 (2)	
C53	0.9105 (11)	0.6208 (7)	0.9993 (9)	0.119 (5)	
Н53	0.9046	0.6033	1.0488	0.143*	
Cl1	0.9982 (2)	0.68306 (18)	1.00929 (18)	0.0999 (9)	
Cl2	0.8040 (2)	0.6587 (2)	0.9735 (2)	0.1203 (12)	
C13	0.9323 (4)	0.5563 (3)	0.9528 (4)	0.173 (2)	
F1	0.8095 (4)	0.2626 (2)	0.6736 (4)	0.101 (2)	
F4	0.8653 (5)	0.4465 (4)	0.5773 (3)	0.109 (2)	
F9	0.9953 (6)	0.4077 (3)	0.8474 (4)	0.115 (3)	
F10	0.8158 (7)	0.3893 (4)	0.8525 (4)	0.132 (3)	
F12	0.7316 (4)	0.3379 (4)	0.7754 (5)	0.113 (2)	
F2	0.7479 (7)	0.3521 (5)	0.6101 (6)	0.059 (2)*	0.50
F3	0.8896 (9)	0.3232 (6)	0.5865 (6)	0.079 (3)*	0.50
F5	0.9440 (7)	0.5154 (5)	0.6616 (6)	0.066 (2)*	0.50
F6	1.0157 (8)	0.4328 (6)	0.6201 (6)	0.076 (3)*	0.50

F7	0.9229 (7)	0.4985 (5)	0.8164 (6)	0.069 (2)*	0.50
F8	1.0450 (8)	0.4633 (6)	0.7713 (6)	0.072 (3)*	0.50
F11	0.8449 (7)	0.2824 (5)	0.8077 (6)	0.064 (2)*	0.50
F2A	0.7275 (7)	0.3435 (5)	0.6368 (6)	0.064 (2)*	0.50
F3A	0.8545 (8)	0.3053 (6)	0.5896 (6)	0.067 (3)*	0.50
F5A	0.9653 (10)	0.4925 (8)	0.6330 (8)	0.098 (4)*	0.50
F6A	0.9945 (9)	0.3966 (7)	0.5930 (7)	0.095 (3)*	0.50
F7A	0.9554 (9)	0.5035 (7)	0.7850 (8)	0.092 (3)*	0.50
F8A	1.0651 (9)	0.4438 (6)	0.7440 (7)	0.080 (3)*	0.50
F11A	0.8713 (8)	0.2969 (6)	0.8308 (7)	0.073 (3)*	0.50

Geometric parameters (Å, °)

Cu1—N1	2.079 (4)	C26—C27	1.374 (10)
Cu1—N2	2.104 (4)	С26—Н26	0.9300
Cu1—P2	2.2455 (14)	C27—C28	1.379 (11)
Cu1—P1	2.2534 (15)	С27—Н27	0.9300
Cu2—C51	1.896 (9)	C28—C29	1.379 (10)
Cu2—C52	1.905 (8)	C28—H28	0.9300
Cu2—C50	1.962 (10)	C29—C30	1.364 (9)
Cu2—C49	1.980 (9)	С29—Н29	0.9300
P1—C7	1.817 (6)	С30—Н30	0.9300
P1—C1	1.822 (5)	C31—C36	1.389 (8)
P1—C13	1.835 (6)	C31—C32	1.389 (9)
P2—C31	1.819 (6)	C32—C33	1.385 (10)
P2—C19	1.825 (5)	С32—Н32	0.9300
P2—C25	1.831 (6)	C33—C34	1.380 (14)
N1—C37	1.335 (7)	С33—Н33	0.9300

N1—C48	1.358 (7)	C34—C35	1.371 (14)
N2—C46	1.340 (7)	С34—Н34	0.9300
N2—C47	1.350 (7)	C35—C36	1.385 (12)
C1—C6	1.374 (9)	С35—Н35	0.9300
C1—C2	1.396 (8)	С36—Н36	0.9300
С2—С3	1.387 (9)	С37—С38	1.390 (9)
С2—Н2	0.9300	С37—Н37	0.9300
C3—C4	1.353 (11)	C38—C39	1.379 (10)
С3—Н3	0.9300	С38—Н38	0.9300
C4—C5	1.385 (13)	C39—C40	1.385 (10)
С4—Н4	0.9300	С39—Н39	0.9300
C5—C6	1.411 (10)	C40—C48	1.410 (8)
С5—Н5	0.9300	C40—C41	1.431 (9)
С6—Н6	0.9300	C41—C42	1.346 (11)
С7—С8	1.396 (8)	C41—H41	0.9300
C7—C12	1.403 (8)	C42—C43	1.428 (10)
С8—С9	1.389 (10)	С42—Н42	0.9300
С8—Н8	0.9300	C43—C44	1.400 (10)
С9—С10	1.374 (11)	C43—C47	1.411 (8)
С9—Н9	0.9300	C44—C45	1.343 (11)
C10—C11	1.399 (11)	C44—H44	0.9300
С10—Н10	0.9300	C45—C46	1.391 (9)
C11—C12	1.379 (9)	С45—Н45	0.9300
С11—Н11	0.9300	С46—Н46	0.9300
С12—Н12	0.9300	C47—C48	1.438 (8)
C13—C18	1.375 (9)	C49—F3A	1.234 (14)
C13—C14	1.390 (8)	C49—F2	1.318 (12)
C14—C15	1.390 (10)	C49—F1	1.356 (11)

C14—H14	0.9300	C49—F2A	1.410 (13)
C15—C16	1.392 (12)	C49—F3	1.518 (16)
С15—Н15	0.9300	C50—F5A	1.129 (16)
C16—C17	1.373 (11)	C50—F6	1.284 (14)
С16—Н16	0.9300	C50—F4	1.354 (13)
C17—C18	1.386 (9)	C50—F6A	1.505 (18)
С17—Н17	0.9300	C50—F5	1.550 (17)
C18—H18	0.9300	C51—F8	1.234 (15)
C19—C20	1.379 (8)	C51—F7A	1.250 (15)
C19—C24	1.385 (8)	C51—F9	1.362 (12)
C20—C21	1.392 (9)	C51—F7	1.467 (15)
С20—Н20	0.9300	C51—F8A	1.627 (18)
C21—C22	1.372 (11)	C52—F12	1.326 (12)
C21—H21	0.9300	C52—F10	1.362 (12)
C22—C23	1.384 (12)	C52—F11	1.386 (13)
С22—Н22	0.9300	C52—F11A	1.422 (14)
C23—C24	1.397 (9)	C53—C13	1.567 (15)
С23—Н23	0.9300	C53—C12	1.739 (14)
С24—Н24	0.9300	C53—Cl1	1.755 (15)
C25—C30	1.384 (8)	С53—Н53	0.9800
C25—C26	1.390 (8)		
N1—Cu1—N2	80.22 (18)	С29—С30—Н30	119.7
N1—Cu1—P2	112.98 (13)	С25—С30—Н30	119.7
N2—Cu1—P2	115.85 (12)	C36—C31—C32	118.6 (6)
N1—Cu1—P1	111.31 (13)	C36—C31—P2	123.0 (5)
N2—Cu1—P1	104.88 (13)	C32—C31—P2	118.4 (4)
P2—Cu1—P1	123.31 (6)	C33—C32—C31	121.2 (7)
C51—Cu2—C52	93.8 (5)	С33—С32—Н32	119.4

C51—Cu2—C50	90.9 (5)	С31—С32—Н32	119.4
C52—Cu2—C50	166.5 (4)	C34—C33—C32	119.3 (8)
C51—Cu2—C49	171.1 (4)	С34—С33—Н33	120.3
C52—Cu2—C49	88.7 (4)	С32—С33—Н33	120.3
C50—Cu2—C49	88.6 (5)	C35—C34—C33	120.1 (7)
C7—P1—C1	104.5 (3)	С35—С34—Н34	119.9
C7—P1—C13	103.3 (3)	С33—С34—Н34	119.9
C1—P1—C13	104.8 (3)	C34—C35—C36	120.7 (8)
C7—P1—Cu1	117.14 (18)	С34—С35—Н35	119.6
C1—P1—Cu1	109.27 (19)	С36—С35—Н35	119.6
C13—P1—Cu1	116.51 (18)	C35—C36—C31	120.0 (8)
C31—P2—C19	103.2 (2)	С35—С36—Н36	120.0
C31—P2—C25	104.5 (3)	С31—С36—Н36	120.0
C19—P2—C25	102.5 (2)	N1—C37—C38	123.0 (6)
C31—P2—Cu1	114.15 (18)	N1—C37—H37	118.5
C19—P2—Cu1	116.57 (18)	С38—С37—Н37	118.5
C25—P2—Cu1	114.32 (18)	C39—C38—C37	119.0 (6)
C37—N1—C48	118.1 (5)	С39—С38—Н38	120.5
C37—N1—Cu1	129.4 (4)	С37—С38—Н38	120.5
C48—N1—Cu1	112.5 (3)	C38—C39—C40	119.8 (6)
C46—N2—C47	116.8 (5)	С38—С39—Н39	120.1
C46—N2—Cu1	131.0 (4)	С40—С39—Н39	120.1
C47—N2—Cu1	112.0 (3)	C39—C40—C48	117.9 (6)
C6—C1—C2	119.6 (5)	C39—C40—C41	123.0 (6)
C6—C1—P1	123.0 (5)	C48—C40—C41	119.1 (6)
C2—C1—P1	117.2 (4)	C42—C41—C40	120.6 (6)
C3—C2—C1	120.4 (6)	C42—C41—H41	119.7
С3—С2—Н2	119.8	C40—C41—H41	119.7

С1—С2—Н2	119.8	C41—C42—C43	122.1 (6)
C4—C3—C2	120.0 (7)	C41—C42—H42	119.0
С4—С3—Н3	120.0	C43—C42—H42	119.0
С2—С3—Н3	120.0	C44—C43—C47	117.4 (6)
C3—C4—C5	120.9 (6)	C44—C43—C42	123.7 (6)
С3—С4—Н4	119.5	C47—C43—C42	118.9 (6)
С5—С4—Н4	119.5	C45—C44—C43	119.5 (6)
C4—C5—C6	119.5 (7)	C45—C44—H44	120.3
С4—С5—Н5	120.2	C43—C44—H44	120.3
С6—С5—Н5	120.2	C44—C45—C46	119.9 (6)
C1—C6—C5	119.5 (7)	С44—С45—Н45	120.1
С1—С6—Н6	120.3	С46—С45—Н45	120.1
С5—С6—Н6	120.3	N2—C46—C45	123.3 (6)
C8—C7—C12	118.9 (5)	N2—C46—H46	118.3
C8—C7—P1	122.9 (4)	С45—С46—Н46	118.3
C12—C7—P1	118.1 (4)	N2—C47—C43	123.1 (5)
C9—C8—C7	120.2 (6)	N2—C47—C48	117.6 (5)
С9—С8—Н8	119.9	C43—C47—C48	119.2 (5)
С7—С8—Н8	119.9	N1-C48-C40	122.3 (5)
С10—С9—С8	120.8 (6)	N1—C48—C47	117.6 (5)
С10—С9—Н9	119.6	C40—C48—C47	120.0 (5)
С8—С9—Н9	119.6	F3A—C49—F2	93.2 (9)
C9—C10—C11	119.4 (6)	F3A—C49—F1	95.0 (9)
С9—С10—Н10	120.3	F2—C49—F1	114.1 (9)
C11—C10—H10	120.3	F3A—C49—F2A	114.1 (9)
C12—C11—C10	120.5 (6)	F2—C49—F2A	25.8 (5)
C12—C11—H11	119.8	F1	96.0 (8)
C10-C11-H11	119.8	F3A—C49—F3	23.3 (7)

C11—C12—C7	120.2 (6)	F2—C49—F3	101.5 (9)
C11—C12—H12	119.9	F1—C49—F3	110.6 (8)
С7—С12—Н12	119.9	F2A—C49—F3	126.5 (9)
C18—C13—C14	118.9 (5)	F3A—C49—Cu2	123.9 (9)
C18—C13—P1	123.9 (4)	F2—C49—Cu2	114.8 (7)
C14—C13—P1	117.1 (5)	F1—C49—Cu2	113.2 (6)
C15—C14—C13	120.6 (6)	F2A—C49—Cu2	110.0 (7)
C15—C14—H14	119.7	F3—C49—Cu2	100.9 (7)
C13—C14—H14	119.7	F5A—C50—F6	70.9 (10)
C14—C15—C16	119.9 (7)	F5A—C50—F4	101.2 (11)
C14—C15—H15	120.1	F6—C50—F4	118.5 (11)
С16—С15—Н15	120.1	F5A—C50—F6A	102.4 (12)
C17—C16—C15	119.0 (6)	F6—C50—F6A	36.7 (7)
С17—С16—Н16	120.5	F4—C50—F6A	94.7 (10)
C15—C16—H16	120.5	F5A—C50—F5	28.2 (9)
C16—C17—C18	121.1 (7)	F6—C50—F5	94.7 (9)
С16—С17—Н17	119.5	F4—C50—F5	103.4 (8)
C18—C17—H17	119.5	F6A—C50—F5	129.5 (9)
C13—C18—C17	120.5 (6)	F5A—C50—Cu2	129.8 (13)
C13—C18—H18	119.8	F6—C50—Cu2	117.0 (8)
C17—C18—H18	119.8	F4—C50—Cu2	113.4 (7)
C20—C19—C24	119.0 (5)	F6A—C50—Cu2	109.4 (8)
C20—C19—P2	117.8 (4)	F5—C50—Cu2	105.7 (8)
C24—C19—P2	123.1 (4)	F8—C51—F7A	77.3 (10)
C19—C20—C21	120.6 (6)	F8—C51—F9	97.3 (9)
С19—С20—Н20	119.7	F7A—C51—F9	118.3 (11)
С21—С20—Н20	119.7	F8—C51—F7	103.3 (9)
C22—C21—C20	120.6 (7)	F7A—C51—F7	32.0 (7)

C22—C21—H21	119.7	F9—C51—F7	96.5 (10)
C20—C21—H21	119.7	F8—C51—F8A	24.0 (7)
C21—C22—C23	119.2 (6)	F7A—C51—F8A	95.9 (11)
C21—C22—H22	120.4	F9—C51—F8A	101.8 (8)
С23—С22—Н22	120.4	F7—C51—F8A	125.3 (9)
C22—C23—C24	120.3 (6)	F8—C51—Cu2	125.7 (11)
С22—С23—Н23	119.9	F7A—C51—Cu2	117.0 (9)
С24—С23—Н23	119.9	F9—C51—Cu2	115.1 (6)
C19—C24—C23	120.3 (6)	F7—C51—Cu2	114.0 (7)
C19—C24—H24	119.9	F8A—C51—Cu2	103.6 (8)
C23—C24—H24	119.9	F12—C52—F10	99.5 (8)
C30—C25—C26	118.0 (5)	F12—C52—F11	95.8 (8)
С30—С25—Р2	124.2 (4)	F10—C52—F11	113.3 (8)
C26—C25—P2	117.8 (4)	F12—C52—F11A	115.8 (9)
C27—C26—C25	121.1 (6)	F10-C52-F11A	93.4 (8)
С27—С26—Н26	119.4	F11—C52—F11A	25.4 (6)
С25—С26—Н26	119.4	F12—C52—Cu2	117.0 (7)
C26—C27—C28	120.2 (6)	F10—C52—Cu2	115.4 (7)
С26—С27—Н27	119.9	F11—C52—Cu2	113.5 (7)
С28—С27—Н27	119.9	F11A—C52—Cu2	112.6 (7)
C27—C28—C29	118.6 (6)	Cl3—C53—Cl2	114.0 (9)
С27—С28—Н28	120.7	Cl3—C53—Cl1	116.0 (11)
С29—С28—Н28	120.7	Cl2—C53—Cl1	110.5 (7)
C30—C29—C28	121.5 (6)	Cl3—C53—H53	105.1
С30—С29—Н29	119.3	Cl2—C53—H53	105.1
С28—С29—Н29	119.3	С11—С53—Н53	105.1
C29—C30—C25	120.5 (6)		

(3) Complex 5: $[(PPh_3)_3Ag_2Br_2]$ ·CH₂Cl₂

lemp = 153

Crystal data

$C_{55}H_{47}Ag_2Br_2Cl_2P_3$	complex 4 with a CH2Cl2 solvent molecule
$M_r = \underline{1247.30}$	$D_{\rm x} = 1.604 {\rm Mg m}^{-3}$
Monoclinic, <u>P2₁/c</u>	Melting point: <u>?</u> K
Hall symbol: <u>-P 2ybc</u>	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>16.3137 (7)</u> Å	Cell parameters from <u>9685</u> reflections
b = 18.3199(9) Å	$\theta = \underline{2.5} - \underline{28.2}^{\circ}$
c = 18.5850 (9) Å	$\mu = 2.54 \text{ mm}^{-1}$
$\beta = 111.592 (1)^{\circ}$	T = 153 K
V = 5164.6 (4) Å ³	Block, colourless
<i>Z</i> = <u>4</u>	$\underline{0.44} \times \underline{0.40} \times \underline{0.30} \text{ mm}$
F(000) = 2480	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
--	---	---	---	-------------------------------

Agl	0.672935 (10)	0.925727 (9)	0.805631 (9)	0.01888 (4)
Ag2	0.839837 (11)	0.912236 (10)	0.744962 (10)	0.02504 (5)
Br1	0.755855 (15)	0.802587 (12)	0.779016 (13)	0.02246 (5)
Br2	0.753992 (14)	1.031434 (12)	0.744515 (14)	0.02270 (5)
Cl1	0.77902 (5)	0.01349 (4)	0.54962 (5)	0.04968 (19)
C12	0.80528 (5)	0.11328 (6)	0.43857 (6)	0.0698 (3)
P1	0.51851 (3)	0.91432 (3)	0.71880 (3)	0.01450 (11)
P2	0.73216 (4)	0.94584 (3)	0.94520 (3)	0.01727 (11)
Р3	0.96462 (4)	0.88804 (3)	0.71008 (3)	0.01871 (12)
C1	0.50120 (14)	0.90296 (11)	0.61694 (12)	0.0164 (4)
C2	0.56932 (15)	0.92298 (12)	0.59311 (13)	0.0226 (5)
H2	0.6229	0.9412	0.6298	0.027*
C3	0.55944 (17)	0.91648 (14)	0.51613 (14)	0.0308 (6)
Н3	0.6068	0.9294	0.5005	0.037*
C4	0.48124 (17)	0.89140 (13)	0.46199 (14)	0.0295 (6)
H4	0.4742	0.8883	0.4090	0.035*
C5	0.41368 (16)	0.87097 (13)	0.48515 (14)	0.0283 (5)
Н5	0.3600	0.8532	0.4481	0.034*
C6	0.42332 (15)	0.87607 (13)	0.56222 (13)	0.0244 (5)
Н6	0.3766	0.8612	0.5778	0.029*
C7	0.45797 (14)	0.99637 (11)	0.72449 (13)	0.0178 (4)
C8	0.39856 (15)	1.03133 (13)	0.66069 (15)	0.0264 (5)
H8	0.3869	1.0124	0.6103	0.032*
С9	0.35584 (17)	1.09422 (14)	0.67028 (17)	0.0343 (6)
Н9	0.3159	1.1186	0.6262	0.041*
C10	0.37108 (16)	1.12135 (13)	0.74324 (18)	0.0340 (6)
H10	0.3412	1.1640	0.7493	0.041*
C11	0.42969 (17)	1.08669 (13)	0.80747 (17)	0.0333 (6)

H11	0.4399	1.1051	0.8578	0.040*
C12	0.47345 (16)	1.02500 (13)	0.79802 (14)	0.0265 (5)
H12	0.5147	1.0017	0.8422	0.032*
C13	0.45269 (13)	0.84103 (11)	0.73743 (12)	0.0164 (4)
C14	0.48590 (16)	0.77034 (13)	0.74539 (15)	0.0291 (5)
H14	0.5414	0.7615	0.7413	0.035*
C15	0.43905 (17)	0.71285 (13)	0.75923 (16)	0.0334 (6)
H15	0.4621	0.6647	0.7635	0.040*
C16	0.35952 (16)	0.72453 (13)	0.76683 (15)	0.0295 (5)
H16	0.3276	0.6849	0.7767	0.035*
C17	0.32666 (17)	0.79435 (14)	0.75998 (19)	0.0403 (7)
H17	0.2719	0.8030	0.7655	0.048*
C18	0.37268 (16)	0.85230 (13)	0.74506 (16)	0.0318 (6)
H18	0.3489	0.9002	0.7401	0.038*
C19	0.68865 (14)	0.87720 (12)	0.99227 (13)	0.0198 (5)
C20	0.60999 (17)	0.84316 (14)	0.94906 (15)	0.0331 (6)
H20	0.5805	0.8561	0.8963	0.040*
C21	0.5741 (2)	0.79066 (16)	0.98206 (18)	0.0453 (7)
H21	0.5199	0.7680	0.9520	0.054*
C22	0.6165 (2)	0.77119 (15)	1.05805 (17)	0.0414 (7)
H22	0.5916	0.7352	1.0808	0.050*
C23	0.69494 (19)	0.80390 (14)	1.10113 (15)	0.0347 (6)
H23	0.7246	0.7901	1.1536	0.042*
C24	0.73134 (17)	0.85690 (13)	1.06869 (14)	0.0278 (5)
H24	0.7856	0.8793	1.0990	0.033*
C25	0.85068 (14)	0.93931 (12)	0.99768 (12)	0.0199 (5)
C26	0.89399 (15)	0.88231 (13)	0.97767 (14)	0.0262 (5)
H26	0.8623	0.8507	0.9362	0.031*

C27	0.98355 (16)	0.87119 (15)	1.01792 (15)	0.0337 (6)
H27	1.0126	0.8313	1.0048	0.040*
C28	1.03038 (16)	0.91813 (15)	1.07701 (14)	0.0339 (6)
H28	1.0918	0.9111	1.1041	0.041*
C29	0.98759 (17)	0.97505 (16)	1.09625 (14)	0.0362 (6)
H29	1.0199	1.0074	1.1367	0.043*
C30	0.89776 (16)	0.98607 (14)	1.05734 (14)	0.0294 (5)
H30	0.8688	1.0254	1.0715	0.035*
C31	0.69968 (15)	1.03275 (12)	0.97436 (13)	0.0230 (5)
C32	0.6678 (2)	1.03934 (16)	1.03316 (18)	0.0508 (8)
H32	0.6639	0.9976	1.0620	0.061*
C33	0.6413 (3)	1.10682 (19)	1.0501 (2)	0.0748 (13)
Н33	0.6188	1.1110	1.0904	0.090*
C34	0.6473 (2)	1.16778 (17)	1.0094 (2)	0.0591 (9)
H34	0.6300	1.2141	1.0221	0.071*
C35	0.6782 (2)	1.16171 (15)	0.95101 (18)	0.0455 (7)
H35	0.6818	1.2038	0.9224	0.055*
C36	0.70432 (18)	1.09454 (13)	0.93301 (16)	0.0337 (6)
H36	0.7256	1.0907	0.8920	0.040*
C37	0.92970 (14)	0.86194 (12)	0.60896 (13)	0.0218 (5)
C38	0.85169 (16)	0.82279 (13)	0.57658 (15)	0.0305 (6)
H38	0.8176	0.8115	0.6070	0.037*
C39	0.82346 (18)	0.80024 (14)	0.50016 (16)	0.0384 (7)
Н39	0.7705	0.7730	0.4786	0.046*
C40	0.8715 (2)	0.81704 (15)	0.45558 (16)	0.0406 (7)
H40	0.8517	0.8018	0.4031	0.049*
C41	0.9487 (2)	0.85602 (17)	0.48707 (16)	0.0447 (7)
H41	0.9821	0.8676	0.4561	0.054*

C42	0.97789 (17)	0.87838 (15)	0.56348 (15)	0.0346 (6)
H42	1.0313	0.9051	0.5848	0.041*
C43	1.03520 (14)	0.81345 (12)	0.76208 (14)	0.0230 (5)
C44	1.06567 (16)	0.75935 (14)	0.72631 (16)	0.0318 (6)
H44	1.0489	0.7597	0.6716	0.038*
C45	1.12050 (18)	0.70456 (15)	0.76967 (19)	0.0408 (7)
H45	1.1406	0.6673	0.7447	0.049*
C46	1.14551 (18)	0.70429 (15)	0.8484 (2)	0.0468 (8)
H46	1.1840	0.6673	0.8780	0.056*
C47	1.1153 (2)	0.75738 (17)	0.88496 (19)	0.0522 (9)
H47	1.1327	0.7568	0.9397	0.063*
C48	1.05948 (19)	0.81149 (15)	0.84194 (15)	0.0380 (6)
H48	1.0377	0.8475	0.8672	0.046*
C49	1.04025 (14)	0.96375 (12)	0.72028 (12)	0.0186 (4)
C50	1.00609 (15)	1.03419 (12)	0.70952 (13)	0.0231 (5)
H50	0.9451	1.0416	0.6989	0.028*
C51	1.06014 (16)	1.09348 (13)	0.71415 (15)	0.0285 (5)
H51	1.0362	1.1414	0.7064	0.034*
C52	1.14885 (16)	1.08309 (13)	0.72997 (14)	0.0290 (5)
Н52	1.1858	1.1239	0.7324	0.035*
C53	1.18394 (16)	1.01391 (14)	0.74220 (16)	0.0339 (6)
Н53	1.2452	1.0070	0.7539	0.041*
C54	1.13015 (15)	0.95430 (14)	0.73758 (15)	0.0293 (5)
Н54	1.1547	0.9066	0.7463	0.035*
C55	0.8296 (2)	0.0270 (2)	0.4828 (2)	0.0661 (10)
H55A	0.8096	-0.0113	0.4424	0.079*
H55B	0.8942	0.0221	0.5093	0.079*

Geometric parameters (Å, °)

Ag1—P2	2.4399 (6)	C23—C24	1.387 (3)
Ag1—P1	2.4500 (6)	С23—Н23	0.9500
Ag1—Br1	2.7670 (3)	С24—Н24	0.9500
Ag1—Br2	2.8097 (3)	C25—C26	1.386 (3)
Ag1—Ag2	3.3174 (3)	C25—C30	1.388 (3)
Ag2—P3	2.3942 (6)	C26—C27	1.390 (3)
Ag2—Br2	2.5925 (3)	С26—Н26	0.9500
Ag2—Br1	2.6364 (3)	C27—C28	1.383 (4)
Cl1—C55	1.743 (4)	С27—Н27	0.9500
Cl2—C55	1.759 (4)	C28—C29	1.373 (4)
P1—C1	1.820 (2)	С28—Н28	0.9500
P1—C7	1.823 (2)	C29—C30	1.390 (4)
P1—C13	1.830 (2)	С29—Н29	0.9500
P2—C19	1.818 (2)	С30—Н30	0.9500
P2—C25	1.821 (2)	C31—C32	1.378 (4)
P2—C31	1.822 (2)	C31—C36	1.386 (3)
P3—C37	1.816 (2)	C32—C33	1.384 (4)
P3—C43	1.819 (2)	С32—Н32	0.9500
P3—C49	1.819 (2)	C33—C34	1.372 (5)
C1—C2	1.388 (3)	С33—Н33	0.9500
C1—C6	1.393 (3)	C34—C35	1.359 (4)
С2—С3	1.384 (3)	С34—Н34	0.9500
С2—Н2	0.9500	C35—C36	1.383 (4)
C3—C4	1.381 (3)	С35—Н35	0.9500
С3—Н3	0.9500	С36—Н36	0.9500
C4—C5	1.374 (4)	C37—C42	1.383 (3)
C4—H4	0.9500	C37—C38	1.390 (3)

С5—С6	1.385 (3)	C38—C39	1.385 (4)
С5—Н5	0.9500	С38—Н38	0.9500
С6—Н6	0.9500	C39—C40	1.369 (4)
С7—С8	1.382 (3)	С39—Н39	0.9500
C7—C12	1.397 (3)	C40—C41	1.376 (4)
С8—С9	1.392 (3)	С40—Н40	0.9500
С8—Н8	0.9500	C41—C42	1.383 (4)
С9—С10	1.378 (4)	C41—H41	0.9500
С9—Н9	0.9500	С42—Н42	0.9500
C10—C11	1.379 (4)	C43—C44	1.384 (3)
С10—Н10	0.9500	C43—C48	1.389 (4)
C11—C12	1.382 (3)	C44—C45	1.388 (4)
C11—H11	0.9500	C44—H44	0.9500
С12—Н12	0.9500	C45—C46	1.366 (4)
C13—C18	1.379 (3)	С45—Н45	0.9500
C13—C14	1.391 (3)	C46—C47	1.378 (5)
C14—C15	1.380 (3)	С46—Н46	0.9500
C14—H14	0.9500	C47—C48	1.384 (4)
C15—C16	1.373 (3)	С47—Н47	0.9500
С15—Н15	0.9500	С48—Н48	0.9500
C16—C17	1.374 (4)	C49—C50	1.390 (3)
С16—Н16	0.9500	C49—C54	1.392 (3)
C17—C18	1.386 (3)	C50—C51	1.382 (3)
С17—Н17	0.9500	С50—Н50	0.9500
C18—H18	0.9500	C51—C52	1.380 (3)
C19—C24	1.383 (3)	С51—Н51	0.9500
C19—C20	1.386 (3)	C52—C53	1.375 (4)
C20—C21	1.381 (4)	С52—Н52	0.9500

С20—Н20	0.9500	C53—C54	1.384 (3)
C21—C22	1.371 (4)	С53—Н53	0.9500
C21—H21	0.9500	С54—Н54	0.9500
C22—C23	1.373 (4)	С55—Н55А	0.9900
С22—Н22	0.9500	С55—Н55В	0.9900
P2—Ag1—P1	128.464 (19)	C22—C23—C24	120.6 (2)
P2—Ag1—Br1	106.548 (15)	С22—С23—Н23	119.7
P1—Ag1—Br1	105.342 (15)	С24—С23—Н23	119.7
P2—Ag1—Br2	105.340 (15)	C19—C24—C23	120.0 (2)
P1—Ag1—Br2	108.382 (15)	C19—C24—H24	120.0
Br1—Ag1—Br2	98.968 (9)	C23—C24—H24	120.0
P2—Ag1—Ag2	108.613 (15)	C26—C25—C30	119.5 (2)
P1—Ag1—Ag2	122.916 (14)	C26—C25—P2	116.83 (17)
Br1—Ag1—Ag2	50.365 (6)	C30—C25—P2	123.62 (18)
Br2—Ag1—Ag2	49.210 (6)	C25—C26—C27	120.3 (2)
P3—Ag2—Br2	131.852 (17)	С25—С26—Н26	119.8
P3—Ag2—Br1	119.516 (16)	С27—С26—Н26	119.8
Br2—Ag2—Br1	108.344 (9)	C28—C27—C26	120.0 (2)
P3—Ag2—Ag1	172.659 (16)	С28—С27—Н27	120.0
Br2—Ag2—Ag1	55.137 (6)	С26—С27—Н27	120.0
Br1—Ag2—Ag1	53.926 (7)	C29—C28—C27	119.6 (2)
Ag2—Br1—Ag1	75.709 (8)	C29—C28—H28	120.2
Ag2—Br2—Ag1	75.652 (8)	С27—С28—Н28	120.2
C1—P1—C7	105.94 (10)	C28—C29—C30	121.0 (2)
C1—P1—C13	103.62 (10)	С28—С29—Н29	119.5
C7—P1—C13	103.05 (10)	С30—С29—Н29	119.5
C1—P1—Ag1	115.03 (7)	C25—C30—C29	119.6 (2)
C7—P1—Ag1	109.83 (7)	С25—С30—Н30	120.2

C13—P1—Ag1	118.08 (7)	С29—С30—Н30	120.2
C19—P2—C25	102.84 (10)	C32—C31—C36	118.8 (2)
C19—P2—C31	104.68 (10)	C32—C31—P2	123.3 (2)
C25—P2—C31	105.41 (11)	C36—C31—P2	117.88 (18)
C19—P2—Ag1	109.57 (8)	C31—C32—C33	120.0 (3)
C25—P2—Ag1	119.11 (7)	С31—С32—Н32	120.0
C31—P2—Ag1	113.79 (8)	С33—С32—Н32	120.0
С37—Р3—С43	104.37 (11)	C34—C33—C32	120.7 (3)
C37—P3—C49	104.54 (10)	С34—С33—Н33	119.7
C43—P3—C49	104.18 (10)	С32—С33—Н33	119.7
C37—P3—Ag2	110.78 (7)	C35—C34—C33	119.7 (3)
C43—P3—Ag2	115.49 (8)	С35—С34—Н34	120.1
C49—P3—Ag2	116.25 (7)	С33—С34—Н34	120.1
C2—C1—C6	118.9 (2)	C34—C35—C36	120.3 (3)
C2—C1—P1	117.74 (16)	С34—С35—Н35	119.9
C6—C1—P1	123.40 (17)	С36—С35—Н35	119.9
C3—C2—C1	120.3 (2)	C35—C36—C31	120.5 (3)
С3—С2—Н2	119.9	С35—С36—Н36	119.7
С1—С2—Н2	119.9	С31—С36—Н36	119.7
C4—C3—C2	120.4 (2)	C42—C37—C38	118.9 (2)
С4—С3—Н3	119.8	С42—С37—Р3	122.88 (18)
С2—С3—Н3	119.8	С38—С37—Р3	118.20 (19)
C5—C4—C3	119.7 (2)	C39—C38—C37	120.3 (3)
С5—С4—Н4	120.2	С39—С38—Н38	119.9
С3—С4—Н4	120.2	С37—С38—Н38	119.9
C4—C5—C6	120.4 (2)	C40—C39—C38	120.3 (2)
С4—С5—Н5	119.8	С40—С39—Н39	119.8
С6—С5—Н5	119.8	С38—С39—Н39	119.8

C5—C6—C1	120.3 (2)	C39—C40—C41	119.8 (3)
С5—С6—Н6	119.8	С39—С40—Н40	120.1
С1—С6—Н6	119.8	C41—C40—H40	120.1
C8—C7—C12	118.9 (2)	C40—C41—C42	120.4 (3)
C8—C7—P1	123.80 (18)	C40—C41—H41	119.8
C12—C7—P1	117.35 (17)	C42—C41—H41	119.8
С7—С8—С9	120.0 (2)	C37—C42—C41	120.3 (2)
С7—С8—Н8	120.0	С37—С42—Н42	119.9
С9—С8—Н8	120.0	C41—C42—H42	119.9
С10—С9—С8	120.5 (2)	C44—C43—C48	118.9 (2)
С10—С9—Н9	119.8	C44—C43—P3	123.51 (19)
С8—С9—Н9	119.8	C48—C43—P3	117.58 (18)
C9—C10—C11	120.1 (2)	C43—C44—C45	120.5 (3)
С9—С10—Н10	119.9	C43—C44—H44	119.7
C11—C10—H10	119.9	C45—C44—H44	119.7
C10—C11—C12	119.5 (2)	C46—C45—C44	119.9 (3)
C10—C11—H11	120.2	С46—С45—Н45	120.0
C12—C11—H11	120.2	C44—C45—H45	120.0
C11—C12—C7	121.0 (2)	C45—C46—C47	120.4 (3)
C11—C12—H12	119.5	С45—С46—Н46	119.8
С7—С12—Н12	119.5	С47—С46—Н46	119.8
C18—C13—C14	118.3 (2)	C46—C47—C48	120.0 (3)
C18—C13—P1	123.57 (17)	С46—С47—Н47	120.0
C14—C13—P1	118.08 (16)	С48—С47—Н47	120.0
C15—C14—C13	120.7 (2)	C47—C48—C43	120.3 (3)
C15—C14—H14	119.7	C47—C48—H48	119.9
C13—C14—H14	119.7	C43—C48—H48	119.9
C16—C15—C14	120.6 (2)	C50—C49—C54	118.8 (2)

C16—C15—H15	119.7	С50—С49—Р3	118.17 (16)
C14—C15—H15	119.7	C54—C49—P3	123.07 (17)
C15—C16—C17	119.1 (2)	C51—C50—C49	120.5 (2)
C15—C16—H16	120.4	С51—С50—Н50	119.7
C17—C16—H16	120.4	С49—С50—Н50	119.7
C16—C17—C18	120.7 (2)	C52—C51—C50	120.0 (2)
С16—С17—Н17	119.7	C52—C51—H51	120.0
C18—C17—H17	119.7	C50—C51—H51	120.0
C13—C18—C17	120.6 (2)	C53—C52—C51	120.2 (2)
C13—C18—H18	119.7	С53—С52—Н52	119.9
C17—C18—H18	119.7	С51—С52—Н52	119.9
C24—C19—C20	118.9 (2)	C52—C53—C54	120.1 (2)
C24—C19—P2	122.81 (18)	С52—С53—Н53	120.0
C20—C19—P2	118.32 (17)	С54—С53—Н53	120.0
C21—C20—C19	120.6 (2)	C53—C54—C49	120.4 (2)
C21—C20—H20	119.7	С53—С54—Н54	119.8
С19—С20—Н20	119.7	С49—С54—Н54	119.8
C22—C21—C20	120.2 (3)	Cl1—C55—Cl2	112.08 (18)
C22—C21—H21	119.9	С11—С55—Н55А	109.2
C20—C21—H21	119.9	Cl2—C55—H55A	109.2
C21—C22—C23	119.7 (2)	С11—С55—Н55В	109.2
C21—C22—H22	120.2	Cl2—C55—H55B	109.2
С23—С22—Н22	120.2	H55A—C55—H55B	107.9
P2—Ag1—Ag2—P3	68.57 (13)	C14—C15—C16—C17	0.4 (4)
P1—Ag1—Ag2—P3	-110.52 (13)	C15—C16—C17—C18	0.4 (4)
Br1—Ag1—Ag2—P3	-27.82 (12)	C14—C13—C18—C17	-0.3 (4)
Br2—Ag1—Ag2—P3	163.05 (13)	P1-C13-C18-C17	-179.3 (2)
P2—Ag1—Ag2—Br2	-94.479 (17)	C16—C17—C18—C13	-0.5 (5)

P1—Ag1—Ag2—Br2	86.423 (18)	C25—P2—C19—C24	28.2 (2)
Br1—Ag1—Ag2—Br2	169.131 (11)	C31—P2—C19—C24	-81.8 (2)
P2—Ag1—Ag2—Br1	96.390 (16)	Ag1—P2—C19—C24	155.81 (17)
P1—Ag1—Ag2—Br1	-82.708 (18)	C25—P2—C19—C20	-150.80 (19)
Br2—Ag1—Ag2—Br1	-169.131 (11)	C31—P2—C19—C20	99.2 (2)
P3—Ag2—Br1—Ag1	176.072 (18)	Ag1—P2—C19—C20	-23.2 (2)
Br2—Ag2—Br1—Ag1	-9.381 (9)	C24—C19—C20—C21	1.0 (4)
P2—Ag1—Br1—Ag2	-100.733 (16)	P2-C19-C20-C21	-180.0 (2)
P1—Ag1—Br1—Ag2	120.294 (15)	C19—C20—C21—C22	-0.5 (5)
Br2—Ag1—Br1—Ag2	8.310 (8)	C20—C21—C22—C23	-0.3 (5)
P3—Ag2—Br2—Ag1	-177.13 (2)	C21—C22—C23—C24	0.6 (4)
Br1—Ag2—Br2—Ag1	9.240 (9)	C20—C19—C24—C23	-0.7 (3)
P2—Ag1—Br2—Ag2	101.562 (16)	P2-C19-C24-C23	-179.67 (18)
P1—Ag1—Br2—Ag2	-118.008 (15)	C22—C23—C24—C19	-0.1 (4)
Br1—Ag1—Br2—Ag2	-8.454 (8)	C19—P2—C25—C26	79.11 (19)
P2—Ag1—P1—C1	177.76 (8)	C31—P2—C25—C26	-171.47 (18)
Br1—Ag1—P1—C1	-55.72 (8)	Ag1—P2—C25—C26	-42.2 (2)
Br2—Ag1—P1—C1	49.44 (8)	C19—P2—C25—C30	-98.4 (2)
Ag2—Ag1—P1—C1	-3.33 (8)	C31—P2—C25—C30	11.0 (2)
P2—Ag1—P1—C7	58.38 (8)	Ag1—P2—C25—C30	140.24 (18)
Br1—Ag1—P1—C7	-175.10 (7)	C30—C25—C26—C27	1.2 (4)
Br2—Ag1—P1—C7	-69.94 (8)	P2-C25-C26-C27	-176.43 (19)
Ag2—Ag1—P1—C7	-122.71 (7)	C25—C26—C27—C28	-1.6 (4)
P2—Ag1—P1—C13	-59.30 (8)	C26—C27—C28—C29	0.9 (4)
Br1—Ag1—P1—C13	67.22 (8)	C27—C28—C29—C30	0.2 (4)
Br2—Ag1—P1—C13	172.38 (8)	C26—C25—C30—C29	-0.1 (4)
Ag2—Ag1—P1—C13	119.61 (8)	P2-C25-C30-C29	177.35 (19)
P1—Ag1—P2—C19	53.46 (8)	C28—C29—C30—C25	-0.6 (4)

Br1—Ag1—P2—C19	-72.59 (8)	C19—P2—C31—C32	13.0 (3)
Br2—Ag1—P2—C19	-177.08 (8)	C25—P2—C31—C32	-95.1 (3)
Ag2—Ag1—P2—C19	-125.57 (8)	Ag1—P2—C31—C32	132.6 (2)
P1—Ag1—P2—C25	171.36 (8)	C19—P2—C31—C36	-164.4 (2)
Br1—Ag1—P2—C25	45.31 (9)	C25—P2—C31—C36	87.5 (2)
Br2—Ag1—P2—C25	-59.17 (9)	Ag1—P2—C31—C36	-44.8 (2)
Ag2—Ag1—P2—C25	-7.67 (9)	C36—C31—C32—C33	-0.2 (5)
P1—Ag1—P2—C31	-63.33 (9)	P2-C31-C32-C33	-177.6 (3)
Br1—Ag1—P2—C31	170.62 (8)	C31—C32—C33—C34	-0.7 (6)
Br2—Ag1—P2—C31	66.13 (9)	C32—C33—C34—C35	1.1 (7)
Ag2—Ag1—P2—C31	117.64 (9)	C33—C34—C35—C36	-0.7 (6)
Br2—Ag2—P3—C37	-91.51 (8)	C34—C35—C36—C31	-0.2 (5)
Br1—Ag2—P3—C37	81.53 (8)	C32—C31—C36—C35	0.6 (4)
Ag1—Ag2—P3—C37	107.21 (14)	P2-C31-C36-C35	178.1 (2)
Br2—Ag2—P3—C43	150.12 (8)	C43—P3—C37—C42	-87.4 (2)
Br1—Ag2—P3—C43	-36.83 (9)	C49—P3—C37—C42	21.8 (2)
Ag1—Ag2—P3—C43	-11.15 (17)	Ag2—P3—C37—C42	147.7 (2)
Br2—Ag2—P3—C49	27.59 (9)	C43—P3—C37—C38	91.7 (2)
Br1—Ag2—P3—C49	-159.36 (8)	C49—P3—C37—C38	-159.20 (18)
Ag1—Ag2—P3—C49	-133.68 (13)	Ag2—P3—C37—C38	-33.3 (2)
C7—P1—C1—C2	102.71 (18)	C42—C37—C38—C39	0.5 (4)
C13—P1—C1—C2	-149.18 (17)	P3—C37—C38—C39	-178.52 (19)
Ag1—P1—C1—C2	-18.81 (19)	C37—C38—C39—C40	-0.8 (4)
C7—P1—C1—C6	-76.6 (2)	C38—C39—C40—C41	0.5 (4)
C13—P1—C1—C6	31.5 (2)	C39—C40—C41—C42	0.0 (5)
Ag1—P1—C1—C6	161.84 (16)	C38—C37—C42—C41	-0.1 (4)
C6—C1—C2—C3	0.3 (3)	P3—C37—C42—C41	179.0 (2)
P1—C1—C2—C3	-179.11 (19)	C40—C41—C42—C37	-0.2 (5)

C1—C2—C3—C4	1.3 (4)	C37—P3—C43—C44	11.5 (2)
C2—C3—C4—C5	-1.7 (4)	C49—P3—C43—C44	-97.9 (2)
C3—C4—C5—C6	0.6 (4)	Ag2—P3—C43—C44	133.35 (19)
C4—C5—C6—C1	0.9 (4)	C37—P3—C43—C48	-168.7 (2)
C2—C1—C6—C5	-1.3 (3)	C49—P3—C43—C48	81.9 (2)
P1—C1—C6—C5	178.00 (18)	Ag2—P3—C43—C48	-46.8 (2)
C1—P1—C7—C8	11.3 (2)	C48—C43—C44—C45	-0.8 (4)
C13—P1—C7—C8	-97.2 (2)	P3—C43—C44—C45	179.01 (19)
Ag1—P1—C7—C8	136.12 (18)	C43—C44—C45—C46	-0.7 (4)
C1—P1—C7—C12	-168.51 (17)	C44—C45—C46—C47	1.2 (4)
C13—P1—C7—C12	82.96 (19)	C45—C46—C47—C48	-0.2 (5)
Ag1—P1—C7—C12	-43.71 (19)	C46—C47—C48—C43	-1.3 (5)
C12—C7—C8—C9	0.5 (3)	C44—C43—C48—C47	1.8 (4)
P1—C7—C8—C9	-179.35 (18)	P3—C43—C48—C47	-178.0 (2)
C7—C8—C9—C10	-1.2 (4)	C37—P3—C49—C50	91.38 (19)
C8—C9—C10—C11	0.7 (4)	C43—P3—C49—C50	-159.35 (18)
C9—C10—C11—C12	0.5 (4)	Ag2—P3—C49—C50	-31.1 (2)
C10—C11—C12—C7	-1.2 (4)	C37—P3—C49—C54	-88.0 (2)
C8—C7—C12—C11	0.7 (3)	C43—P3—C49—C54	21.3 (2)
P1—C7—C12—C11	-179.43 (19)	Ag2—P3—C49—C54	149.53 (18)
C1—P1—C13—C18	-104.5 (2)	C54—C49—C50—C51	1.5 (3)
C7—P1—C13—C18	5.7 (2)	P3—C49—C50—C51	-177.93 (18)
Ag1—P1—C13—C18	126.93 (19)	C49—C50—C51—C52	-0.3 (4)
C1—P1—C13—C14	76.4 (2)	C50—C51—C52—C53	-0.9 (4)
C7—P1—C13—C14	-173.33 (19)	C51—C52—C53—C54	1.0 (4)
Ag1—P1—C13—C14	-52.1 (2)	C52—C53—C54—C49	0.2 (4)
C18—C13—C14—C15	1.1 (4)	C50—C49—C54—C53	-1.4 (4)
P1-C13-C14-C15	-179.8 (2)	P3—C49—C54—C53	178.0 (2)

C13—C14—C15—C16	-1.2 (4)		
-----------------	----------	--	--

5. ¹⁹F NMR monitoring of the reaction course

¹⁹F NMR monitoring of the reaction of TMSCF₃ (3 equiv) with phenCu(PPh₃)Br (1 mmol), AgF (3 equiv) in the presence of 4,4'-difluorobiphenyl (0.5 equiv) as internal standard in CH_2Cl_2 at room temperature. Figures S9, S10 and S11 show the ¹⁹F signals for the reaction after 4, 8, and 18 hours respectively.

Figure S9. ¹⁹F NMR monitoring of the reaction solution after 4 hours.

Figure S10. ¹⁹F NMR monitoring of the reaction solution after 8 hours.

Figure S11. ¹⁹F NMR monitoring of the reaction solution after 18 hours.

6. Reaction mechanism relevant

Scheme S1. The formation of intermediate A

Scheme S1 shows possible mechanisms for the formation of Cu(II) trifluoromethyl intermediate **A**.

Reaction Procedure for the conversion of 2 to 3 in the presence of additional phen ligand: Into a 25-mL Schlenk tube equipped with a stir bar were added $[phenCu(pph_3)_2]^+[Cu(CF_3)_4]^-$ (2) (166 mg, 0.15mmol) and phen (54 mg, 0.30 mmol). The air in the Schlenk was evacuated and backfilled with dry nitrogen three times. Then, AcOH (1 mL) was added by syringe. The resulting mixture was stirred at 90 °C for 2h under nitrogen. Then, the mixture was allowed to cool to room temperature and diluted with CH₂Cl₂ (5 mL). The resulting mixture was separated by filtration and washed with brine (2 x 5 mL). The combined organic layers were evaporated with silica gel. The crude mixture was purified by flash silica gel column chromatography with PE/EA (v/v = 2:1) as eluent to give phenCu(CF₃)₃ (3) (31 mg, 45%).

7. Reactivity studies of 2 and 3 with boronic acids

7.1 Optimization of conditions for reaction of **3** with **6a** (Table 1):

Into a 25-mL Schlenk tube equipped with a stir bar were added (phen)Cu(CF₃)₃ (**3**) (45 mg, 0.1 mmol), (4-methoxyphenyl)boronic acid (**6a**) (30 mg, 0.2 mmol), additive (0.2 mmol), 4,4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The air in the Schlenk tube was evacuated and backfilled with dry oxygen. Dry solvent (1 mL) was then added by syringe. The contents in the tube were vigorously stirred for specified time at specified temperature (heated in an oil bath where necessary). The mixture was allowed to cool to room temperature and diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et₂O.The combined filtrate and the washings were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yield (Table 1). Figure S12 shows the quantitative trifluoromethylation of **6a** at RT in 3 hours (entry 10 in Table 1). Figures S13 and S14 are ¹H and ¹⁹F NMR spectra of the isolated product **7a**.

Figure S12. ¹⁹F NMR spectrum of reaction solution of **3** with **6a** (entry 10 in Table 1).

Figure S14. ¹⁹F NMR spectrum of 4-methoxybenzotrifluoride (7a).

7.2 General procedures for reaction of **3** with various boronic acids (Table 2):

Condition A: Into a 25-mL Schlenk tube equipped with a stir bar were added (phen)Cu(CF₃)₃ (**3**) (45 mg, 0.1 mmol), boronic acid (**6**) (0.2 mmol), **KF** (0.2 mmol), 4,4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The air in the Schlenk tube was evacuated and backfilled with dry oxygen. Dry DMF (1 mL) was then added by syringe. The contents in the tube were vigorously stirred **at room temperature** for 3 hours. The mixture was then diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et₂O.The combined filtrate and the washings were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yields (Table 2).

Condition B: Into a 25-mL Schlenk tube equipped with a stir bar were added (phen)Cu(CF₃)₃ (**3**) (45 mg, 0.1 mmol), boronic acid (**6**) (0.2 mmol), **AgF (0.2 mmol)**, **4** Å **MS**, 4,4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The air in the Schlenk tube was evacuated and backfilled with dry oxygen. Dry DMF (1 mL) was then added by syringe. The contents in the tube were vigorously stirred and heated in an oil bath to **50**°C for 3 hours. The mixture was allowed to cool to room temperature and diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et₂O. The combined filtrate and the washings were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yields (Table 2, marked with ^c).

For another example, Figure S15 shows the ¹⁹F NMR spectrum for the reaction mixture of **3** with *p*-biphenylboronic acid (**6b**), which determines a reaction yield of 92% for the formation of **7b**. Figures S16 and S17 are the ¹H and ¹⁹F NMR spectra for isolated **7b**.

Figure S15. ¹⁹F NMR spectrum of reaction solution of **3** with **6b**.

Figure S16. ¹H NMR of 4-phenylbenzotrifluoride (7b).

Figure S17. ¹⁹F NMR of 4-phenylbenzotrifluoride (7b).

7.3 Reaction of 2 with boronic acids:

Ph ₃ P P	F ₃ C CF ₃ Ph ₃ F ₃ C Cu(III) CF ₃ 2	+ B(OH) ₂ + OCH ₃	additive, solv O_2 , 18 h $F \rightarrow 0$	$\xrightarrow{\text{vent, T}} \xrightarrow{\text{CF}_3} \xrightarrow{\text{vent, T}} \xrightarrow{\text{OCH}_3}$
0.05 mmol		0.1 mmol	0.1 m	mol
Entry	Additive	Solvent	T(°C)	Yield (%)
1	—	DMF	80	trace
2	KF	DMF	80	trace
3	AgF	DMF	80	6
4	K ₃ PO ₄	DMF	80	0
5	KI	DMF	80	15
6	KI	Toluene	80	16
7	AgF	Toluene	80	0
8	KF	Toluene	80	0
9	Cs_2CO_3	Toluene	80	10
10	NaOtBu	Toluene	80	7
11	KF	Toluene	80	0
12	KF	CH ₃ CN	50	0
13	KF	DMSO	80	trace

Table S1. Summary of reaction of 2 with 6a

ΠŒ

Procedure of reaction of **2** with **6a**: Into a 25-mL Schlenk tube equipped with a stir bar were added [phenCu(pph₃)₂]⁺[Cu(CF₃)₄]⁻ (**2**) (55 mg, 0.05 mmol), (4-methoxyphenyl)boronic acid (**6a**) (15 mg, 0.10 mmol), additive (0.10 mmol), and 4,4'-difluorobiphenyl (internal standard; 19 mg, 0.10 mmol). The air in the Schlenk was evacuated and backfilled with dry oxygen. Dry solvent (1 mL) was then added by syringe. The contents in Schlenk tube were vigorously stirred and heated in an oil bath for 18h under specified temperature. The mixture was allowed to cool to room temperature and diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et₂O.The combined filtrate and the washings were concentrated to extrude ether, the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yield. Figure S18 shows the ¹⁹F NMR spectrum for the reaction of **2** with **6a** under reaction conditions of entry 5, Table S1.

Figure 18. ¹⁹F NMR spectrum for the reaction of 2 with 6a (entry 5, Table S1).