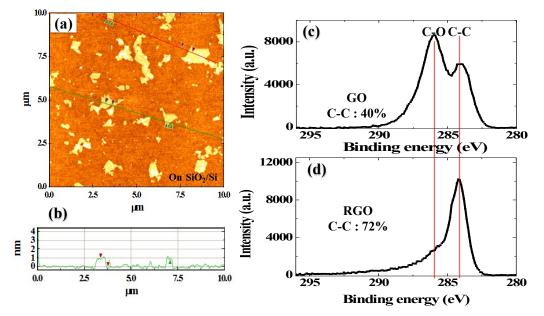
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

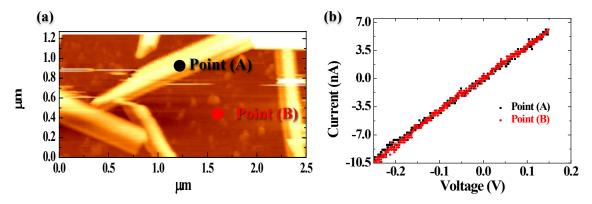
Supporting Information for "Effect of RGO Deposition on Chemical and Mechanical Reliability

of Ag Nanowire Flexible Transparent Electrode"

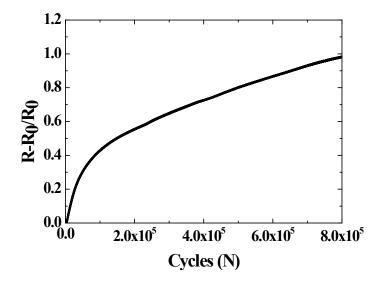

Byungil Hwang, Minkyu Park, Taegeon Kim and Seung Min Han*

Graduate School of Energy Environment Water and Sustainability, Korea Advanced Institute of

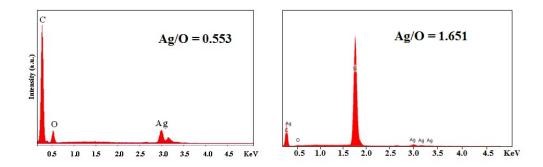
Science & Technology, Daejeon, Republic of Korea, 305-701


Corresponding Author: smhan01@kaist.ac.kr

Supporting Information 01.


Fig. S1. (a) Typical topological AFM image of RGO sheets on Si substrate with SiO_2 layer, and (b) the line profile of the RGO sheets along the green line. (c) XPS spectrum obtained from GO sheets and (d) from RGO sheets.

Supporting Information 02.


Fig. S2. (a) Topological AFM image of RGO layers on the Ag nanowire networks. (b) I-V curves measured at the two points indicated in (a). Point (A) is on the Ag nanowire Point (B) is only on the RGO area.

Supporting Information 03.

Fig. S3. Fractional resistance change of Ag thin film tested under 1.5% strain for 800,000 cycles. The thickness of the Ag thin film was ~100 nm, and the sheet resistance was measured as ~ 0.2 ohm/sq. Ag thin film showed significantly higher increase in fractional resistance of 90% at the 800,000 cycles compared to that of Ag nanowire networks showing only 1.6% increase in fractional resistance.

Supporting Information 04.

Fig. S4. The result of EDX analysis for Ag nanowire electrode (left) and Ag nanowire/RGO hybrid electrode (right) after exposure to ambient air at 70 °C for 132h.

Supporting Information 05.

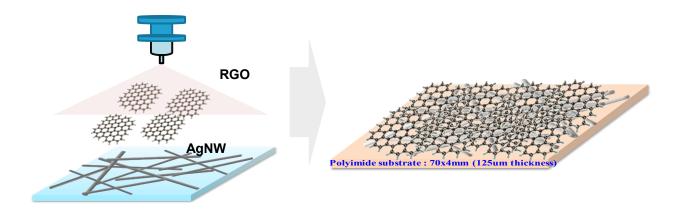


Fig. S5. Schematics for the Ag nanowire/RGO hybrid electrode.