Supporting information

One pot synthesis of carbon dots entrenched chitosan modified magnetic nanoparticles for fluorescence based Cu²⁺ ion sensing and cell imaging

Amit Kumar^a, Angshuman Ray Chowdhuri^a, Dipranjan Laha^b, Soumen Chandra^a, Parimal Karmakar^b, Sumanta Kumar Sahu^{a*}

a Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, Jharkhand, India b Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032, India

* Corresponding author. E-mail: <u>sahu.s.ac@ismdhanbad.ac.in</u>, <u>sumantchem@gmail.com</u>; Fax:

+91 326-2307772; Tel: +91 3262235936

Synthesis of Fe₃O₄

The superparamagnetic Fe_3O_4 nanoparticles were prepared by previously reported procedure¹. In typical recipe, 0.324 g of FeCl₃ and 0.274 g of FeSO₄.7H₂O was taken in 40 mL Millipore water under argon atmosphere. The aqueous ammonia solution (2.5M) was dropped in to the reaction vessel with a violent stirring. The reaction was continued for 1 h at 80° C for complete growth of the nanoparticles.The obtained magnetite was washed with Millipore water under magnetic separation. After that, the resulting magnetic nanoparticles were dried in a vacuum oven at 50°C for overnight.

Synthesis of OCMC coated Fe₃O₄ nanoparticles (Fe₃O₄@OCMC)

To prepare the Fe₃O₄@OCMC previous reported method². In typical procedure, 500 mg of OCMC was dissolved in 50 mL of Millipore water and added dropwise in to the Fe₃O₄ and stirring for 12 h at the room temperature for the preparation of OCMC coated Fe₃O₄ nanoparticles (Fe₃O₄@OCMC). The obtained Fe₃O₄@OCMC was washed with ethanol and Millipore water to remove unreacted OCMC then dried in a vacuum oven at 50 °C for overnight.

Figure S1. Photoluminescent spectra of Fe₃O₄@CMC@CDs and Fe₃O₄@CMC@CDs-FA.

Figure S2. Linear dependence of fluorescence quenching of $Fe_3O_4@CMC@CDs$ with copper ion (0-20 μ M) concentration for LOD calculation.

Calculation of detection limit (LOD): All fluorescence emission spectra of the fluorophore were integrated vs. wavenumber, and calibration curves were generated, with the analyte concentration on the X-axis (in μ M) and F0/F on the Y-axis, where F = the integrated fluorophore emission at a particular Cu²⁺ ions concentration and F₀ = the integrated fluorophore emission in the absence of Cu²⁺ ions. The lower fluoride concentrations yielded a linear relationship, and the equation for the line was determined. The limit of the blank was taken to be the average of the blank (without Cu²⁺ ions) +3 times the standard deviation of the blank. This value was entered into the equation determined in (for the Y value), and the corresponding X value was determined. This value provided the LOD in μ M.

Figure S3.Cell viability study of Fe₃O₄@OCMC@CDsafter exposure up to 250 μ g/ml in different cell lines.

Figure S4. FT-IR spectra (a), FESEM image (b), TEM image (c) and PL spectra (at different excitation) of CDs (without Fe_3O_4 nanoparticles).

References

- 1. Mahto, T. K.; Chowdhuri, A. R.; Sahu, S. K. Polyaniline-Functionalized Magnetic Nanoparticles for the Removalof Toxic Dye from Wastewater, Journal of applied polymer science **2014**, *131*, 40840-40848.
- 2. Sahu, S. K.; Maiti, S.; Pramanik, A.; Ghosh, S. K.; Pramanik, P. Controlling the thickness of polymeric shell on magnetic nanoparticles loadedwith doxorubicin for targeted delivery and MRI contrast agent, Carbohydrate Polymers **2012**, *87*, 2593–2604.