Supplementary Information: Alkoxysilyl Functionalized Polynorbornenes with Enhanced Selectivity for Heavy Hydrocarbon Separations

Synthesis of the trimethylsilyl norbornene monomer

Under nitrogen, a 100-mL Schlenk flask was charged with cyclopentadiene (4.75 ml, 35.2 mmol) and vinyltrimethyl silane (31 mL, 211.6 mmol), heated to 205 °C, and stirred for 3 hours. After 3 hours, the reaction mixture was cooled to room temperature before it was distilled and isolated as a clear liquid at 74% yield.

Figure S1. Cracking of dicyclopentadiene and subsequent Diels-Alder reaction with vinyl trimethylsilane

Viscosity testing of low molecular weight addition-type oligomers produced from nickel catalysis

Inherent viscosity results of addition-type polymers prepared from nickel naphthenate (Nph) catalyst conditions. Viscosity testing performed using 1.0 g/dL solution in toluene at 35 °C.

Figure S2. Nickel catalysts gave low inherent viscosities in toluene for several monomer and catalyst concentrations

*Gel permeation chromatography (GPC) of ROMP-SiMe*₃, and GPC of APN-SiMe₃ synthesized *from nickel (Ni) catalyst and palladium (Pd) catalyst*

30 °C	APN-SiMe ₃ [Ni(nph) ₂	
	catalyst]	
M _n	28774	
$M_{ m w}$	63998	
Mz	117740	
M _p	57165	
M_w/M_n	2.224	
Intrinsic Viscosity	0.1589	
Sample Recovery (%)	99.26	
dn/dc	2.738	
	1	

Table S1. GPC confirmed that nickel naphthenate produced molecular weight species of insufficient molecular weight for film formation

Table S2. GPC results for high molecular polymers used for film casting

30 °C	ROMP-SiMe ₃	APN-SiMe ₃ (Pd catalyst)
M_n	60194	122070
$M_{ m w}$	102180	153110
Mz	236270	172770
M _p	80227	176610
M_w/M_n	1.698	1.254
Intrinsic Viscosity	0.5506	0.3387
Sample Recovery (%)	99.673	106.35
dn/dc	0.0373	0.0405

Figure S3. Thermal stability comparison of the ROMP polymers

Figure S4. Thermal stability comparison of the addition-type polymers

Figure S5. ATR-FTIR shows varying ethoxysilyl and methylsilyl content in the ROMP polymers

Figure S6. ATR-FTIR shows varying ethoxysilyl and methylsilyl content in the addition-type polymers

Figure S7. Glass transition temperatures of ROMP polymers from Tan (delta) peaks

Figure S8. Glass transition temperatures of addition-type polymers from Tan (delta) peaks

¹*H*-*NMR* and ¹³*C*-*NMR* spectroscopy of monomers and ¹*H*-*NMR* of polymers with appropriate integrations and peak designations

Figure S9. ¹H-NMR with appropriate peak positions and integrations for trimethylsilyl norbornene

NMR spectra are in agreement with the formation of trimethylsilyl norbornene.

¹H NMR (CDCl₃): δ 6.16 (dd, 1H, minor), 5.95 (dd, 1H, minor), 5.93 (dd, 1H, major), 5.92 (dd, 1H, major), 2.93 (br s, 1H, major), 2.91 (br s, 1H, minor), 2.87 (br s, 1H, major), 2.73 (br s, 1H, minor), 1.85 (ddd, 1H, major), 1.52 (ddd, 1H, minor), 1.38 (ddd, 1H, major), 1.16 (m, 1H, minor), 1.15 (m, 1H, major), 1.13 (m, 1H, minor), 1.12 (m, 1H, major), 1.05 (m, 1H, minor), 1.03 (m, 1H, major), 0.92 (ddd, 1H, major), 0.31 (ddd, 1H, minor), 0.00 (s, 3H, minor), -0.10 (s, 3H, major)

Figure S10. ¹³C-NMR with appropriate peak positions for trimethylsilyl norbornene

Figure S11. ¹H-NMR with appropriate peak positions and integrations for dimethylethoxysilyl norbornene

NMR spectra for dimethylethoxysilyl norbornene:

¹H NMR (CDCl₃): δ 6.15 (dd, 1H, minor), 5.98 (dd, 1H, major), 5.94 (dd, 1H, major), 5.92 (dd, 1H, minor), 3.68 (q, 2H, minor), 3.65 (q, 2H, major), 2.97 (br s, 1H, major), 2.92 (br s, 1H, minor), 2.88 (br s, 1H, major), 2.81 (br s, 1H, minor), 1.88 (ddd, 1H, major), 1.62 (ddd, 1H, minor), 1.38 (ddd, 1H, major), 1.19 (t, 3H, minor), 1.18 (t, 3H, major), 1.17 (m, 1H, minor), 1.16 (m, 1H, major), 1.13 (m, 1H, major), 1.12 (m, 1H, major), 1.05 (m, 1H, minor), 1.03 (m, 1H, minor), 1.00 (ddd, 1H, major), 0.41 (ddd, 1H, minor), 0.12 (s, 3H, minor), 0.11 (s, 3H, minor), 0.04 (s, 3H, major), -0.04 (s, 3H, major)

Figure S12. ¹³C-NMR with appropriate peak positions for dimethylethoxysilyl norbornene

Figure S13. ¹H-NMR with appropriate peak positions and integrations for methyldiethoxysilyl norbornene

NMR spectra for methyldiethoxysilyl norbornene:

¹H NMR (CDCl₃): δ 6.13 (dd, 1H, major), 5.98 (m, 2H, minor), 5.91 (dd, 1H, major), 3.78 (q, 2H, major), 3.78 (q, 2H, major), 3.76 (q, 2H, minor), 3.72 (q, 2H, minor), 3.00 (m, 1H, minor), 2.92 (br s, 1H, major), 2.88 (m, 1H, minor), 2.86 (br s, 1H, major), 1.88 (ddd, 1H, minor), 1.70 (ddd, 1H, major), 1.38 (m, 1H, minor), 1.36 (m, 1H, major), 1.22 (t, 3H, major), 1.21 (t, 3H, major), 1.20 (t, 3H, minor), 1.18 (t, 3H, minor), 1.17 (m, 1H, major), 1.15 (m, 1H, minor), 1.11 (m, 1H, minor), 1.09 (m, 1H, major), 1.05 (ddd, 1H, minor), 0.45 (ddd, 1H, major), 0.13 (s, 3H, major), -0.04 (s, 3H, minor)

Figure S14. ¹³C-NMR with appropriate peak positions for methyldiethoxysilyl norbornene

Figure S15. ¹H-NMR with appropriate peak positions and integrations for triethoxysilyl norbornene

NMR spectra for triethoxysilyl norbornene:

¹H NMR (CDCl₃): δ 6.12 (dd, 1H, major), 6.01 (m, 2H, minor), 5.91 (dd, 1H, major), 3.83 (q, 6H, major), 3.77 (q, 6H, minor), 3.02 (m, 1H, minor), 2.92 (br s, 1H, major), 2.91 (br s, 1H, major), 2.87 (br s, 1H, minor), 1.86 (ddd, 1H, minor), 1.77 (ddd, 1H, major), 1.37 (m, 1H, minor), 1.35 (m, 1H, major), 1.35 (br s, 1H, minor), 1.33 (br s, 1H, major), 1.22 (t, 9H, major), 1.19 (t, 9H, minor), 1.17 (m, 1H, major), 1.15 (m, 1H, minor), 1.08 (m, 1H, minor), 0.45 (ddd, 1H, major)

Figure S16. ¹³C-NMR with appropriate peak positions for triethoxysilyl norbornene

Figure S17. ¹H-NMR with appropriate peak positions and integrations for ROMP-SiMe₃

NMR spectra are in agreement with the formation of ROMP-SiMe₃.

¹H NMR (CDCl₃): δ 5.25 (several broad peaks, 2H, alkenyl), 3.32-0.63 (several broad peaks, aliphatic, 7H), 0.00 and -0.04 (singlets, -Si(CH₃)₃, 9H)

Figure S18. ¹H-NMR with appropriate peak positions and integrations for ROMP-SiMe₂OEt

NMR spectra are in agreement with the formation of ROMP-SiMe₂OEt.

¹H NMR (CDCl₃): δ 5.26 (several broad peaks, 2H, alkenyl), 3.36 (br s, Si(OCH₂CH₃), 2H) 3.32-1.42 (several broad peaks, aliphatic, 5H + H₂O), 1.30 (br s, aliphatic, 1H), 1.17 (s, Si(OCH₂CH₃), 3H), 0.16 (br shoulder, aliphatic, 1H), 0.10 and 0.06 (singlets, -Si(CH₃)₃, 6H)

Figure S19. ¹H-NMR with appropriate peak positions and integrations for ROMP-SiMe(OEt)₂

NMR spectra are in agreement with the formation of ROMP-SiMe(OEt)₂.

¹H NMR (CDCl₃): δ 5.28 (several broad peaks, 2H, alkenyl), 3.73 (br s, Si(OCH₂CH₃), 4H) 3.27-1.27 (several broad peaks, aliphatic, 6H + H₂O), 1.19 (s, Si(OCH₂CH₃), 6H), 0.16 (br shoulder, aliphatic, 1H), 0.13/0.10 and 0.06 (singlets, -Si(CH₃)₃, 3H)

Figure S20. ¹H-NMR with appropriate peak positions and integrations for ROMP-Si(OEt)₃

NMR spectra are in agreement with the formation of ROMP-Si(OEt)₃.

¹H NMR (CDCl₃): δ 5.34 (several broad peaks, 2H, alkenyl), 3.80 (br s, Si(OCH₂CH₃), 6H) 3.27-1.30 (several broad peaks, aliphatic, 6H + H₂O), 1.20 (s, Si(OCH₂CH₃), 9H), 0.16 (br shoulder, aliphatic, 1H)

Figure S21. ¹H-NMR with appropriate peak positions and integrations for APN-SiMe₃

NMR spectra are in agreement with the formation of APN-SiMe₃.

¹H NMR (CDCl₃): δ 3.24-0.25 (several broad peaks, aliphatic, 9H), 0.04 and -0.04 (singlets, - Si(CH₃)₃, 9H)

Figure S22. ¹H-NMR with appropriate peak positions and integrations for APN-SiMe₂OEt

NMR spectra are in agreement with the formation of APN-SiMe₂OEt.

¹H NMR (CDCl₃): δ 3.64 (br s, Si(OC*H*₂CH₃), 2H), 1.14 (br s, Si(OCH₂C*H*₃), 3H), 3.28-0.35 (several broad peaks, aliphatic, 9H), 0.06 (br s, -Si(C*H*₃)₃, 6H)

Figure S23. ¹H-NMR with appropriate peak positions and integrations for APN-SiMe(OEt)₂

NMR spectra are in agreement with the formation of APN-SiMe(OEt)₂.

¹H NMR (CDCl₃): δ 3.74 (br s, Si(OC*H*₂CH₃), 4H), 1.17 (br s, Si(OCH₂C*H*₃), 6H), 3.46-0.35 (several broad peaks, aliphatic, 9H), 0.07 (br s, -Si(C*H*₃)₃, 3H)

Figure S24. ¹H-NMR with appropriate peak positions and integrations for APN-Si(OEt)₃

NMR spectra are in agreement with the formation of APN-Si(OEt)₃.

¹H NMR (CDCl₃): δ 3.79 (br s, Si(OCH₂CH₃), 6H), 1.19 (br s, Si(OCH₂CH₃), 9H), 3.42-0.16 (several broad peaks, aliphatic, 9H)