Supporting information for

Tandem Allylic Alcohol Isomerization/Oxo-Michael Addition Reaction Promoted by Re₂O₇

Jiadong Hu,^{*a*} Dongyang Xu,^{*b*} Qiang Zhang,^{*c*} Yang Shang,^{*b*} Mumin Shi,^{*c*} Yucui, Huangfu,^{*c*} Leilei, Liu,^{*c*} Rong, liang,^{*c*} Yisheng Lai,^{**a*} Yupeng He,^{**b*} Jin-ming Gao^{*c*} and Weiqing Xie^{**c*,*d*}

^a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China

^b College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, China

^c Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shanxi, China

^d State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Table of Contents

1.	General information	2
2.	Optimization of the reaction conditions	3
3.	General procedure for the preparation of substrates	4
4.	General procedure for the Tandem Reaction	. 12
5.	Relative configuration of 7a, 7l, 7m	. 20
6.	X-ray data of 7m	. 22
7.	Chirality transfer studies	. 32
8.	Copies of spectrums	. 43

1. General information

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification.Non-aqueous reaction were conducted under an inert atmosphere of argon in flame-dried glassware. Anhydrous solvent were treated as follow: tetrahydrofuran and diethyl ether were distilled from sodium under argon atmosphere, dichcloromethane and toluene was distilled distilled from calcium hydride under argon atmosphere. Anhydrous chloroform, acetonitrile and ethyl acetate were commercial available. Thin layer chromatography was conducted on Merck 60 F254 pre-coated silica gel plates. Column chromatography was carried out by normal silica gel (40-60 µm, 200-400 mesh, Silicycle P60). NMR data including ¹H NMR or ¹³C NMR spectra were recorded on Agilent 500 and Agilent 400. ¹H NMR Chemical shifts were reported in ppm from the solvent resonanceas the internal standard (CDCl₃: 7.26 ppm). ¹³C NMR chemical shifts were reported in ppm relative to the solvent (CDCl₃:77.16 ppm). Infrared spectra were performed on a Nicolet 380FT-IR and are reported in terms of frequency of absorption (cm⁻¹). Low mass spectra were measured on a Shimadzu LCMS-2010EV mass spectrometer (ESI). High resolution mass spectra were obtained from IonSpec 4.7 Tesla FTMS mass spectrometer (MALDI), Bruker APEXIII 7.0 TESLA FTMS (ESI).

2. Optimization of the reaction conditions

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$						
Entry	Catalyst (equiv)	Solvent	<i>t</i> (h)	5a $(\%)^b$	yield $(\%)^b$	
1		CH_2Cl_2	15	100	0	
2	O=VSO ₄	CH_2Cl_2	15	100	0	
3	POVO	CH_2Cl_2	15	100	0	
4	МТО	CH_2Cl_2	15	100	0	
5	Ph ₃ SiO-ReO ₃	CH_2Cl_2	1	0	82 ^g	
6	Re_2O_7	CH_2Cl_2	1	0	83	
7	Re_2O_7	CHCl ₃	1	0	67	
8	Re_2O_7	Toluene	15	21	52 ^c	
9	Re_2O_7	CH ₃ CN	15	43	35 ^c	
10	Re_2O_7	EtOAc	15	53	28 ^c	
11	Re_2O_7	THF	15	58	19 ^c	
12 ^e	Re_2O_7	CH_2Cl_2	1	0	82	
13 ^f	Re_2O_7	CH_2Cl_2	1	0	83 ^{<i>g</i>}	

 Table 1. Optimization of reaction conditions ^a

^{*a*} **5a** (0.1 mmol) in 0.5 mL solvent was added to a solution of catalyst (10 mol%) in 0.5 mL solvent at rt. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H-NMR using 1,4-dimethoxybenzene as inner standard. ^{*d*} 10 mol% catalyst loading. ^{*e*} 5 mol% catalyst loading. ^{*f*} 2.5 mol% catalyst loading. ^{*g*} dr 40:1 determined by ¹H NMR.

3. General procedure for the preparation of substrates

General procedure A¹: To a stirred suspension of *phenols* (10 mmol, 1.0 equiv) in *but-2-ene-1,4-diol* (10 mL) was added *iodobenzene diacetate* (DAIB, 12 mmol, 1.2 equiv) in small portions within 1h at 0 °C and the reaction mixture was warmed to room temperature successively until all *phenols* was consumed as judged by TLC. The reaction mixture was diluted with ethyl acetate and quenched with saturated NaHCO₃ (10mL) and extracted with ethyl acetate (50mL×3). Combined extracts were washed with brine, dried over Na₂SO₄, and solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) to afford the product.

This compound was prepared according to the general procedure A as a pale brown oil (7.37g, 38% yield in 100 mmol scale) to serve as the initial substrate and was isolated as a mixture of alkene geometrical isomers (E:Z; 5:1). Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 6.80-6.76 (m, 2H), 6.29-6.24 (m, 2H), 5.86-5.69 (m, 2H), 4.12-4.09 (m, 2H), 3.83-3.80 (m, 2H), 2.09 (brs, 1H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.31, 151.97, 132.47, 130.16, 127.53, 72.64, 65.81, 62.77, 26.40. IR (neat) 3442, 2944, 2859, 1685, 1646, 1077 cm⁻¹.

HRMS (EI) exact mass calcd for $C_{11}H_{14}O_3$: m/z 194.0943 [M]⁺, found: m/z 194.0942.

This compound was prepared according to the general procedure A as a pale brown oil (581mg, 28% yield in 10 mmol scale) and was isolated as a mixture of alkene geometrical isomers (E:Z; 5:1). Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 6.76-6.72 (m, 2H), 6.37-6.32 (m, 2H), 5.88-5.72 (m, 2H), 4.13 (dd, J = 5.2, 1.3 Hz, 2H), 3.86 (dd, J = 5.5, 1.3 Hz, 2H), 1.81-1.76 (m, 3H), 0.83 (t, J = 7.6 Hz, 3H).

¹ Liu, Q.; Rovis, T., Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones Using the Intramolecular Stetter Reaction. Journal of the American Chemical Society 2006, 128, (8), 2552-2553.

¹³C NMR (126 MHz, CDCl₃) δ 185.66, 151.15, 132.15, 131.47, 127.88, 76.40, 65.63, 62.96, 32.42, 7.95.

IR (neat) 3439, 2934, 2857, 1667, 1644, 1075cm⁻¹.

HRMS (EI) exact mass calcd for $C_{12}H_{16}O_3$: m/z 208.1099 [M]⁺, found: m/z 208.1103.

This compound was prepared according to the general procedure A as a pale brown oil (700mg, 32% yield in 10 mmol scale) and was isolated as a mixture of alkene geometrical isomers (E:Z; 5:1). Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 6.77-6.72 (m, 2H), 6.40-6.36 (m, 2H), 5.90-5.72 (m, 2H), 4.15 (dd, J = 5.3, 1.4 Hz, 2H), 3.85 (dd, J = 5.4, 1.4 Hz, 2H), 2.07-1.98 (m, 1H), 1.67 (brs, 1H), 0.94 (d, J = 6.9 Hz, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 185.79, 150.31, 132.10, 131.51, 128.24, 78.37, 65.40, 63.10, 36.78, 17.22.

IR (neat) 3441, 2938, 2860, 1671, 1649, 1065cm⁻¹.

HRMS (EI) exact mass calcd for $C_{13}H_{18}O_3$: m/z 222.1256 [M]⁺, found: m/z 222.1261.

This compound was prepared according to the general procedure A as a pale yellow oil (1.41g, 68% yield in 10 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.78-6.73 (m, 1H), 6.56-6.53 (m, 1H), 6.27 (dd, *J* = 10.0, 2.0 Hz, 1H), 5.78-5.71 (m, 1H), 5.65-5.58 (m, 1H), 4.12 (dd, *J* = 6.4, 1.7 Hz, 2H), 3.88 (dd, *J* = 6.4, 1.7 Hz, 2H), 2.00 (brs, 1H), 1.89 (s, 3H), 1.41 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.99, 151.47, 146.92, 136.97, 132.14, 130.15, 128.63, 73.12, 61.30, 58.74, 26.64, 15.83.

IR (neat) 3442, 2939, 2862, 1668, 1663, 1069cm⁻¹.

HRMS (EI) exact mass calcd for $C_{12}H_{16}O_3$: m/z 208.1099 [M]⁺, found: m/z 208.1097.

This compound was prepared according to the general procedure A as a pale yellow oil (1.83g, 73% yield in 10 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.67 (dd, *J* = 9.9, 3.0 Hz, 1H), 6.52 (d, *J* = 3.1 Hz, 1H), 6.18 (d, *J* = 9.9 Hz, 1H), 5.78-5.72 (m, 1H), 5.66-5.59 (m, 1H), 4.16-4.09 (m, 2H), 3.91-3.80 (m, 2H), 1.99 (brs, 1H), 1.40 (s, 3H), 1.22 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 185.48, 149.03, 147.75, 144.85, 132.26, 132.01, 128.72, 73.18, 61.06, 58.75, 34.77, 29.32, 26.96.

IR (neat) 3440, 2959, 2868, 1667, 1633, 1079cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₅H₂₃O₃: m/z 251.1647 [M+H]⁺, found: m/z 251.1641.

This compound was prepared according to the general procedure A as a pale yellow oil (985mg, 43% yield in 10 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.97 (d, *J* = 2.9 Hz, 1H), 6.83 (dd, *J* = 10.1, 2.9 Hz, 1H), 6.39 (d, *J* = 10.1 Hz, 1H), 5.80-5.74 (m, 1H), 5.65-5.59 (m, 1H), 4.16-4.12 (m, 2H), 3.96-3.93 (m, 2H), 1.74 (brs, 1H), 1.49 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 178.24, 151.93, 147.64, 133.57, 132.42, 129.18, 128.19, 74.82, 61.93, 58.84, 26.52.

IR (neat) 3442, 2961, 2865, 1669, 1645, 1068cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{11}H_{14}ClO_3$: m/z 229.0631 [M+H]⁺, found: m/z 229.0626.

This compound was prepared according to the general procedure A as a pale yellow oil (1.12g, 41% yield in 10 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.25 (d, *J* = 2.8 Hz, 1H), 6.84 (dd, *J* = 10.0, 2.9 Hz, 1H), 6.41 (d, *J* = 10.0 Hz, 1H), 5.81-5.73 (m, 1H), 5.66-5.59 (m, 1H), 4.17-4.12 (m, 2H), 3.97-3.94 (m, 2H), 1.70 (brs, 1H), 1.48 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 178.04, 152.26, 151.82, 132.44, 128.70, 128.20, 125.31, 75.47, 62.00, 58.87, 26.32.

IR (neat) 3440, 2959, 2865, 1667, 1646, 1068cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{11}H_{14}BrO_3$: m/z 273.0126 [M+H]⁺, found: m/z 273.0121.

9 was prepared with *p*-Cresol and Allyl alcohol according to the general procedure A.

General procedure B: To a mixture of the 4-(allyloxy)-4-methylcyclohexa-2,5-dien-1-one(9) (5.5 mmol, 1.1 equiv) and secondary alcohol (5.0 mmol, 1.0 equiv) in CH_2Cl_2 (20 mL, 0.25M) was added Grubbs' 2nd (0.05 mmol, 1 mol%). The reaction mixture was stirred at room temperature under argon atomsphere until all secondary alcohols was consumed as judged by TLC. The solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2, v/v) to afford the product.

This compound was prepared according to the general procedure B as a dark grey oil (332mg, 32% yield in 5 mmol scale) and was isolated as a mixture of alkene geometrical isomers (E:Z; 10:1). Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 6.82-6.77 (m, 2H), 6.32-6.26 (m, 2H), 5.79-5.67 (m, 2H), 4.35-4.28 (m, 1H), 3.85-3.81 (m, 2H), 1.58 (brs, 1H), 1.46 (s, 3H), 1.27 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.28, 151.91, 137.25, 130.29, 126.28, 72.72, 68.24, 65.90, 26.52, 23.27.

IR (neat) 3446, 2970, 1738, 1671, 1082cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₂H₁₇O₃: m/z 209.1178 [M+H]⁺, found: m/z 209.1173.

This compound was prepared according to the general procedure B as a dark grey oil (388mg, 35% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.82-6.76 (m, 2H), 6.28 (d, *J* = 9.8 Hz, 2H), 5.72-5.67 (m, 2H), 4.05-4.00 (m, 1H), 3.83 (d, *J* = 3.5 Hz, 2H), 1.74 (brs, 1H), 1.57-1.50 (m, 2H), 1.44 (s, 3H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.28, 151.96, 135.92, 130.23, 127.24, 73.58, 72.70, 65.95, 30.06, 26.48, 9.80.

IR (neat) 3448, 2980, 1733, 1671, 1078 cm⁻¹. **HRMS** (EI) exact mass calcd for $C_{13}H_{18}O_3$: m/z 222.1256 [M]⁺, found: m/z 222.1260.

This compound was prepared according to the general procedure B as a dark grey oil (340mg, 33% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.82-6.77 (m, 2H), 6.31-6.26 (m, 2H), 5.72-5.69 (m, 2H), 4.14-4.09 (m, 1H), 3.84-3.82 (m, 2H), 1.67 (brs, 1H), 1.55-1.47 (m, 2H), 1.45 (s, 3H), 1.42-1.27 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.30, 151.97, 136.27, 130.25, 127.01, 72.72, 72.07, 65.96, 39.35, 26.50, 18.73, 14.09.

IR (neat) 3453, 2958, 2931, 1737, 1673, 1083cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₄H₂₁O₃: m/z 237.1491 [M+H]⁺, found: m/z 237.1486.

This compound was prepared according to the general procedure B as a dark grey oil (373mg, 30% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.79 (d, J = 9.8 Hz, 2H), 6.28 (d, J = 9.8 Hz, 2H), 5.73-5.68 (m, 2H), 4.12-4.06 (m, 1H), 3.83 (d, J = 3.5 Hz, 2H), 1.68 (brs, 1H), 1.54-1.47 (m, 2H), 1.44 (s, 3H), 1.39-1.24 (m, 4H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.28, 151.96, 136.30, 130.24, 127.00, 72.71, 72.30, 65.96, 36.92, 27.66, 26.49, 22.71, 14.14.

IR (neat) 3458, 2962, 2931, 1726, 1653, 1081cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₅H₂₃O₃: m/z 251.1647 [M+H]⁺, found: m/z 251.1641.

This compound was prepared according to the general procedure B as a dark grey oil (526mg, 37% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl**₃) δ 7.34-7.28 (m, 2H), 7.26-7.23 (m, 1H), 7.23-7.19 (m, 2H), 6.81-6.75 (m, 2H), 6.31-6.25 (m, 2H), 5.82-5.71 (m, 2H), 4.39-4.33 (m, 1H), 3.84 (dd, *J* = 4.9, 1.1 Hz, 2H), 2.87 (dd, *J* = 13.6, 4.9 Hz, 1H), 2.77 (dd, *J* = 13.7, 8.3 Hz, 1H), 1.69 (brs, 1H), 1.45 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.27, 151.90, 137.78, 134.96, 130.27, 129.62, 128.67, 127.48, 126.77, 72.81, 72.73, 65.85, 43.98, 26.50.

IR (neat) 3446, 3027, 2928, 1738, 1671, 1083cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{18}H_{21}O_3$: m/z 285.1491 [M+H]⁺, found: m/z 285.1486.

This compound was prepared according to the general procedure B as a dark grey oil (432mg, 32% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.36-7.33 (m, 4H), 7.30-7.27 (m, 1H), 6.80-6.75 (m, 2H), 6.28-6.23 (m, 2H), 5.93-5.87 (m, 1H), 5.84-5.78 (m, 1H), 5.21 (d, *J* = 5.9 Hz, 1H), 3.89-3.83 (m, 2H), 2.12 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.27, 151.92, 142.67, 134.96, 130.22, 128.70, 127.92, 127.64, 126.39, 74.52, 72.73, 65.74, 26.47.

IR (neat) 3435, 3028, 2929, 1738, 1668, 1082cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{19}O_3$: m/z 271.1334 [M+H]⁺, found: m/z 271.1328.

This compound was prepared according to the general procedure B as a dark grey oil (495mg, 35% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.45-7.41 (m, 1H), 7.24-7.13 (m, 3H), 6.79-6.75 (m, 2H), 6.29-6.23 (m, 2H), 5.92-5.85 (m, 1H), 5.81-5.74 (m, 1H), 5.42 (d, *J* = 5.7 Hz, 1H), 3.89-3.83 (m, 2H), 2.34 (s, 3H), 1.92 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.27, 151.93, 140.58, 135.29, 134.08, 130.67, 130.25, 127.79, 127.70, 126.48, 125.97, 72.73, 71.23, 65.77, 26.50, 19.29.

IR (neat) 3435, 3029, 2932, 1736, 1667, 1084cm⁻¹.

HRMS (EI) exact mass calcd for $C_{18}H_{20}O_3$: m/z 284.1412 [M]⁺, found: m/z 284.1415.

This compound was prepared according to the general procedure B as a dark grey oil (466mg, 33% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.24 (t, J = 7.6 Hz, 1H), 7.18-7.13 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 6.80-6.75 (m, 2H), 6.29-6.23 (m, 2H), 5.93-5.86 (m, 1H), 5.85-5.77 (m, 1H), 5.17 (d, J = 5.9 Hz, 1H), 3.88-3.83 (m, 2H), 2.35 (s, 3H), 2.14 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.30, 151.96, 142.64, 138.40, 135.09, 130.20, 128.67, 128.61,

 $127.47,\,127.05,\,123.45,\,74.55,\,72.74,\,65.79,\,26.47,\,21.56.$

IR (neat) 3447, 3018, 2928, 1738, 1671, 1082cm⁻¹.

HRMS (EI) exact mass calcd for $C_{18}H_{20}O_3$: m/z 284.1412 [M]⁺, found: m/z 284.1411.

This compound was prepared according to the general procedure B as a dark grey oil (523mg, 37% yield in 5 mmol scale).

¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 6.78 (dd, J = 10.0, 1.2 Hz, 2H), 6.29-6.24 (m, 2H), 5.94-5.86 (m, 1H), 5.83-5.76 (m, 1H), 5.18 (d, J = 6.0 Hz, 1H), 3.88-3.83 (m, 2H), 2.34 (s, 3H), 2.00 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.29, 151.96, 139.77, 137.69, 135.11, 130.23, 129.39, 127.42, 126.37, 74.38, 72.73, 65.79, 26.49, 21.26.

IR (neat) 3446, 3016, 2928, 1738, 1671, 1082cm⁻¹.

HRMS (EI) exact mass calcd for $C_{18}H_{20}O_3$: m/z 284.1412 [M]⁺, found: m/z 284.1413.

This compound was prepared according to the general procedure B as a dark grey oil (508mg, 34% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.99-6.90 (m, 3H), 6.82-6.76 (m, 2H), 6.30-6.24 (m, 2H), 5.92-5.77 (m, 2H), 5.14 (d, *J* = 5.8 Hz, 1H), 3.91-3.83 (m, 2H), 2.31 (s, 6H), 2.15 (brs, 1H), 1.45 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.28, 151.97, 138.34, 135.14, 130.24, 130.22, 129.58, 127.34,

124.14, 74.61, 72.73, 65.83, 26.49, 21.44.

IR (neat) 3447, 3019, 2929, 1737, 1671, 1083cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₉H₂₃O₃: m/z 299.1647 [M+H]⁺, found: m/z 299.1642.

This compound was prepared according to the general procedure B as a dark grey oil (374mg, 26% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.32 (dd, J = 8.5, 5.5 Hz, 2H), 7.03 (t, J = 8.7 Hz, 2H), 6.77 (d, J = 9.8 Hz, 2H), 6.30-6.24 (m, 2H), 5.91-5.76 (m, 2H), 5.20 (d, J = 5.8 Hz, 1H), 3.86 (d, J = 5.2 Hz, 2H), 2.05 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.24, 162.44 (d, J = 245.8 Hz), 151.81, 138.41 (d, J = 3.1 Hz), 134.75, 130.30, 128.12 (d, J = 8.2 Hz), 127.92, 115.52 (d, J = 21.4 Hz), 73.89, 72.75, 65.65, 26.47. **IR (neat)** 3444, 2929, 1736, 1667, 1083cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₇H₁₈FO₃: m/z 289.1240 [M+H]⁺, found: m/z 289.1164.

This compound was prepared according to the general procedure B as a dark grey oil (474mg, 31% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.33-7.27 (m, 4H), 6.81-6.74 (m, 2H), 6.31-6.23 (m, 2H), 5.89-5.77 (m, 2H), 5.20 (d, *J* = 5.8 Hz, 1H), 3.88-3.84 (m, 2H), 2.03 (brs, 1H), 1.45 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.24, 151.79, 141.07, 134.47, 133.64, 130.34, 128.83, 128.19, 127.78, 73.90, 72.76, 65.59, 26.47.

IR (neat) 3442, 2929, 1738, 1667, 1081 cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{18}ClO_3$: m/z 305.0944 [M+H]⁺, found: m/z 305.0940.

This compound was prepared according to the general procedure B as a dark grey oil (627mg, 36% yield in 5 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.81-6.71 (m, 2H), 6.31-6.20 (m, 2H), 5.90-5.72 (m, 2H), 5.17 (d, *J* = 5.9 Hz, 1H), 3.88-3.80 (m, 2H), 2.20 (brs, 1H), 1.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 185.25, 151.81, 141.63, 134.41, 131.75, 130.29, 128.18, 128.12,

121.72, 73.89, 72.75, 65.57, 26.44.

IR (neat) 3440, 2929, 1737, 1668, 1082cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{18}BrO_3$: m/z 349.0439 [M+H]⁺, found: m/z 349.0436.

4. General procedure for the Tandem Reaction

General procedure C: The *dienone* (0.1 mmol, 1.0 equiv) in 0.5 mL CH_2Cl_2 was added to a solution of Re_2O_7 (2.5 mol%) in 0.5 mL CH_2Cl_2 . The reaction mixture was stirred at room temperature under argon atmosphere until all starting material was consumed as judged by TLC. The solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/15, v/v) to afford the product.

This compound was prepared according to the general procedure C as a pale-yellow solid (17mg, 88% yield in 0.1 mmol scale; 955mg, 82% yield in 6 mmol scale). d.r. = 40:1

¹**H NMR (500 MHz, CDCl₃)** δ 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.09 (d, J = 10.3 Hz, 1H), 5.70-5.62 (m, 1H), 5.32-5.28 (m, 1H), 5.20-5.16 (m, 1H), 4.14-4.09 (m, 1H), 3.99-3.98 (m, 1H), 3.65 (dd, J = 11.7, 2.7 Hz, 1H), 3.45 (dd, J = 11.8, 10.4 Hz, 1H), 2.67 (d, J = 3.1 Hz, 2H), 1.39 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.82, 152.22, 133.45, 130.88, 118.01, 78.09, 76.02, 71.49, 66.99, 42.14, 24.53.

IR (neat) 2972, 1735, 1688, 1363, 1123cm⁻¹.

HRMS (EI) exact mass calcd for $C_{11}H_{14}O_3$: m/z 194.0943 [M]⁺, found: m/z 194.0941.

This compound was prepared according to the general procedure C as a pale-yellow solid (16mg, 75% yield in 0.1 mmol scale). d.r. = 40:1

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.69 (dd, J = 10.5, 2.7 Hz, 1H), 6.12 (dd, J = 10.5, 1.0 Hz, 1H), 5.70-5.62 (m, 1H), 5.33-5.27 (m, 1H), 5.20-5.16 (m, 1H), 4.11-4.06 (m, 1H), 4.04-4.02 (m, 1H), 3.67 (dd, J = 11.7, 2.7 Hz, 1H), 3.44 (dd, J = 11.7, 10.4 Hz, 1H), 2.69-2.65 (m, 2H), 1.81-1.66 (m, 2H), 1.04 (t, J = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.99, 152.17, 133.56, 131.24, 117.96, 76.76, 75.98, 73.31, 66.82, 41.94, 31.50, 7.46.

IR (neat) 2970, 1738, 1686, 1365, 1124cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₂H₁₇O₃: m/z 209.1178 [M+H]⁺, found: m/z 209.1172.

This compound was prepared according to the general procedure C as a white solid (85mg, 38% yield in 1 mmol scale).

¹**H NMR (500 MHz, CDCl₃)** δ 6.75-6.71 (m, 2H), 6.60 (dd, J = 8.7, 3.1 Hz, 1H), 6.01-5.92 (m, 1H), 5.49-5.43 (m, 1H), 5.31-5.27 (m, 1H), 4.59-4.52 (m, 2H), 3.98 (dd, J = 9.3, 3.6 Hz, 1H), 3.86 (dd, J = 9.3, 7.3 Hz, 1H), 3.33-3.24 (m, 1H), 2.38 (d, J = 4.1 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H), 1.20 (d, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 150.32, 149.65, 139.08, 136.35, 117.24, 113.77, 113.62, 112.65, 73.00, 71.74, 26.95, 22.88, 22.86.

IR (neat) 3408, 3317, 2973, 2928, 1508, 1472, 917 cm⁻¹.

HRMS (EI) exact mass calcd for $C_{13}H_{18}O_3$: m/z 222.1256 [M]⁺, found: m/z 222.1261.

This compound was prepared according to the general procedure C as a white solid (80mg, 36% yield in 1 mmol scale) and was isolated as a mixture of alkene geometrical isomers (E:Z; 1.3:1). Spectral data for the two isomers are reported respectively.

E isomer

¹**H NMR (500 MHz, CDCl₃)** δ 6.73-6.71 (m, 2H), 6.60-6.58 (m, 1H), 6.05-5.98 (m, 1H), 5.86-5.84 (m, 1H), 4.50-4.45 (m, 2H), 4.24-4.19 (m, 2H), 3.35-3.29 (m, 1H), 1.17 (d, *J* = 5.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 150.11, 149.91, 139.28, 131.64, 127.33, 113.78, 113.72, 112.48, 69.06, 63.19, 26.93, 22.87.

Z isomer

¹**H NMR (500 MHz, CDCl₃)** δ 6.71-6.68 (m, 2H), 6.58-6.55 (m, 1H), 6.00-5.92 (m, 1H), 5.86-5.83 (m, 1H), 4.59-4.52 (m, 2H), 4.31-4.25 (m, 2H), 3.32-3.23 (m, 1H), 1.19 (d, *J* = 5.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 149.98, 149.81, 139.45, 131.89, 128.14, 113.80, 113.54, 112.53, 65.36, 59.05, 26.89, 22.92.

IR (neat) 3404, 3328, 2973, 2928, 1506, 1472, 919 cm⁻¹.

HRMS (EI) exact mass calcd for $C_{13}H_{18}O_3$: m/z 222.1256 [M]⁺, found: m/z 222.1254.

This compound was prepared according to the general procedure C as a pale-yellow solid (12mg, 58% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 2:1). Spectral data for the two isomers are reported respectively.

Major isomer

¹**H NMR (500 MHz, CDCl**₃) δ 6.38-6.37 (m, 1H), 5.70-5.62 (m, 1H), 5.33-5.15 (m, 2H), 4.12-4.07 (m, 1H), 3.97-3.95 (m, 1H), 3.62 (dd, J = 11.7, 2.8 Hz, 1H), 3.47 (dd, J = 11.7, 10.4 Hz, 1H), 2.67 (dd, J = 3.8, 3.1 Hz, 2H), 1.83 (d, J = 1.4 Hz, 3H), 1.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 196.11, 147.04, 137.18, 133.66, 117.95, 78.38, 76.06, 66.74, 64.15, 42.18, 24.79, 15.95.

Minor isomer

¹**H NMR (500 MHz, CDCl**₃) δ 6.41-6.39 (m, 1H), 6.14-6.05 (m, 1H), 5.43-5.34 (m, 2H), 4.17-4.15 (m, 1H), 4.00-3.97 (m, 1H), 3.99-3.97 (m, 1H), 3.72 (dd, *J* = 12.0, 1.9 Hz, 1H), 2.64-2.61 (m, 2H), 1.84 (d, *J* = 1.5 Hz, 3H), 1.36 (s, 3H).

¹³C NMR (**126 MHz, CDCl₃**) δ 196.46, 146.65, 137.42, 134.55, 119.24, 72.18, 72.03, 71.72, 71.61, 41.66, 24.41, 15.95.

IR (neat) 2962, 1737, 1688, 1365, 1124cm⁻¹.

HRMS (EI) exact mass calcd for $C_{12}H_{16}O_3$: m/z 208.1099 [M]⁺, found: m/z 208.1096.

This compound was prepared according to the general procedure C as a pale-yellow solid (21mg, 82% yield in 0.1 mmol scale; major isomer 181mg, minor isomer 22mg, 81% yield in total in 1 mmol scale) and was isolated as single diastereoisomer by PTLC (d.r. = 8:1). Spectral data for the two isomers are reported respectively.

Major isomer

¹**H NMR (500 MHz, CDCl₃)** δ 6.33 (d, J = 2.8 Hz, 1H), 5.68-5.60 (m, 1H), 5.30-5.25 (m, 1H), 5.18-5.13 (m, 1H), 4.11-4.04 (m, 1H), 3.91-3.89 (m, 1H), 3.61 (dd, J = 11.7, 2.7 Hz, 1H), 3.40 (dd, J = 11.7, 10.4 Hz, 1H), 2.62 (d, J = 3.0 Hz, 2H), 1.35 (s, 3H), 1.18 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 195.20, 148.18, 144.25, 133.54, 117.57, 77.48, 75.35, 71.52, 66.60, 43.80, 34.59, 29.23, 24.60.

Minor isomer

¹**H NMR (500 MHz, CDCl₃)** δ 6.35 (d, J = 2.3 Hz, 1H), 6.14-6.05 (m, 1H), 5.43-5.34 (m, 2H),

4.15-4.09 (m, 2H), 3.92 (dd, *J* = 12.0, 3.5 Hz, 1H), 3.74-3.68 (m, 1H), 2.62-2.58 (m, 2H), 1.36 (s, 3H), 1.21 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 195.97, 148.52, 144.00, 134.57, 119.21, 72.04, 71.73, 71.59, 64.16, 43.61, 34.76, 29.45, 24.56.

IR (neat) 2959, 1738, 1683, 1365, 1128cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{15}H_{23}O_3$: m/z 251.1647 [M+H]⁺, found: m/z 251.1642.

This compound was prepared according to the general procedure C as a pale-yellow solid (16mg, 68% yield in 0.1 mmol scale). d.r. = 15:1. Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 6.82 (d, J = 2.6 Hz, 1H), 5.70-5.61 (m, 1H), 5.34-5.16 (m, 2H),

4.15-4.08 (m, 1H), 4.01-3.96 (m, 1H), 3.67 (dd, *J* = 11.9, 2.8 Hz, 1H), 3.48 (dd, *J* = 11.9, 10.4 Hz, 1H), 2.87 (dd, *J* = 17.2, 3.1 Hz, 1H), 2.75 (dd, *J* = 17.2, 3.0 Hz, 1H), 1.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 187.97, 147.98, 133.10, 132.81, 118.32, 77.83, 76.11, 72.92, 67.02, 42.03, 24.43.

IR (neat) 2962, 1737, 1685, 1365, 1126cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{11}H_{14}ClO_3$: m/z 229.0631 [M+H]⁺, found: m/z 229.0625.

This compound was prepared according to the general procedure C as a pale-yellow solid (18mg, 66% yield in 0.1 mmol scale). d.r. = 15:1. Spectral data for the major isomer is reported.

¹**H NMR (500 MHz, CDCl₃)** δ 7.10 (d, J = 2.6 Hz, 1H), 5.70-5.62 (m, 1H), 5.33-5.19 (m, 2H),

4.14-4.10 (m, 1H), 4.01-3.99 (m, 1H), 3.68 (dd, *J* = 11.9, 2.7 Hz, 1H), 3.49 (dd, *J* = 11.9, 10.4 Hz, 1H), 2.92 (dd, *J* = 17.2, 3.1 Hz, 1H), 2.77 (dd, *J* = 17.2, 3.0 Hz, 1H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 187.84, 152.57, 133.08, 124.40, 118.39, 77.83, 76.12, 73.69, 67.09, 41.68, 24.21.

IR (neat) 2958, 1738, 1684, 1365, 1127cm⁻¹.

HRMS (EI) exact mass calcd for $C_{11}H_{13}BrO_3$: m/z 272.0048 [M]⁺, found: m/z 272.0051.

This compound was prepared according to the general procedure C as a pale-yellow solid (19mg, 93% yield in 0.1 mmol scale). d.r. = 10:1

¹**H NMR (500 MHz, CDCl**₃) δ 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.08 (d, J = 10.5 Hz, 1H), 5.80-5.72 (m, 1H), 5.33-5.26 (m, 1H), 4.07-4.02 (m, 1H), 3.97-3.95 (m, 1H), 3.60 (dd, J = 11.8, 2.7 Hz, 1H), 3.45 (dd, J = 11.8, 10.4 Hz, 1H), 2.66 (d, J = 3.1 Hz, 2H), 1.69-1.64 (m, 3H), 1.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.81, 152.35, 130.82, 130.51, 126.49, 78.07, 76.08, 71.36, 67.22, 42.17, 24.55, 18.05.

IR (neat) 2970, 1684, 1372, 1121cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₂H₁₇O₃: m/z 209.1178 [M+H]⁺, found: m/z 209.1170.

This compound was prepared according to the general procedure C as a pale-yellow solid (20mg, 91% yield in 0.1 mmol scale). d.r. = 20:1

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.83-5.75 (m, 1H), 5.29-5.23 (m, 1H), 4.08-4.03 (m, 1H), 3.97-3.95 (m, 1H), 3.60 (dd, J = 11.8, 2.8 Hz, 1H), 3.45 (dd, J = 11.8, 10.4 Hz, 1H), 2.66 (d, J = 3.2 Hz, 2H), 2.07-1.97 (m, 2H), 1.38 (s, 3H), 0.96 (t, J = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.85, 152.39, 137.05, 130.83, 124.21, 78.11, 76.15, 71.36, 67.33, 42.18, 25.48, 24.56, 13.15.

IR (neat) 2965, 1684, 1372, 1119cm⁻¹. **HRMS** (ESI) exact mass calcd for $C_{13}H_{19}O_3$: m/z 223.1334 [M+H]⁺, found: m/z 223.1328.

This compound was prepared according to the general procedure C as a pale-yellow solid (21mg, 89% yield in 0.1 mmol scale). d.r. = 20:1

¹**H NMR (500 MHz, CDCl₃)** δ 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.77-5.69 (m, 1H), 5.29-5.24 (m, 1H), 4.07-4.02 (m, 1H), 3.97-3.95 (m, 1H), 3.59 (dd, J = 11.8, 2.8 Hz, 1H),

3.48-3.42 (m, 1H), 2.66 (d, *J* = 2.9 Hz, 2H), 2.00-1.94 (m, 2H), 1.38 (s, 3H), 1.39-1.33 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.88, 152.41, 135.38, 130.82, 125.30, 78.07, 76.15, 71.36, 67.34, 42.17, 34.58, 24.57, 22.11, 13.78.

IR (neat) 2960, 1684, 1372, 1120cm⁻¹.

HRMS (EI) exact mass calcd for $C_{14}H_{20}O_3$: m/z 236.1412 [M]⁺, found: m/z 236.1415.

This compound was prepared according to the general procedure C as a pale-yellow solid (23mg, 92% yield in 0.1 mmol scale). d.r. = 20:1

¹**H NMR (500 MHz, CDCl₃)** δ 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.08 (d, J = 10.4 Hz, 1H), 5.77-5.69 (m, 1H), 5.29-5.23 (m, 1H), 4.07-4.02 (m, 1H), 3.97-3.94 (m, 1H), 3.59 (dd, J = 11.8, 2.8 Hz, 1H), 3.44 (dd, J = 11.8, 10.4 Hz, 1H), 2.66 (d, J = 3.0 Hz, 2H), 2.02-1.96 (m, 2H), 1.38 (s, 3H), 1.34-1.22 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.86, 152.40, 135.58, 130.82, 125.12, 78.08, 76.15, 71.35, 67.34, 42.17, 32.18, 31.11, 24.56, 22.32, 14.00.

IR (neat) 2959, 1683, 1372, 1122cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{15}H_{23}O_3$: m/z 251.1647 [M+H]⁺, found: m/z 251.1642.

This compound was prepared according to the general procedure C as a colorless oil (24mg, 87% yield in 0.1 mmol scale). d.r. = 40:1

¹**H NMR (500 MHz, CDCl**₃) δ 7.31-7.27 (m, 2H), 7.22-7.18 (m, 1H), 7.15-7.12 (m, 2H), 6.64 (dd, J = 10.4, 2.8 Hz, 1H), 6.09 (d, J = 10.3 Hz, 1H), 5.94-5.87 (m, 1H), 5.37-5.31 (m, 1H), 4.13-4.07 (m, 1H), 3.98-3.95 (m, 1H), 3.62 (dd, J = 11.8, 2.8 Hz, 1H), 3.47 (dd, J = 11.8, 10.4 Hz, 1H), 3.36-3.33 (m, 2H), 2.67 (d, J = 3.1 Hz, 2H), 1.39 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.84, 152.34, 139.58, 133.74, 130.86, 128.75, 128.61, 126.58, 126.34, 78.12, 75.84, 71.40, 67.22, 42.15, 38.90, 24.55.

IR (neat) 2968, 1678, 1372, 1121cm⁻¹.

HRMS (EI) exact mass calcd for $C_{18}H_{20}O_3$: m/z 284.1412 [M]⁺, found: m/z 284.1406.

This compound was prepared according to the general procedure C as a pale-yellow solid (25mg, 92% yield in 0.1 mmol scale). d.r. = 20:1

¹**H NMR (500 MHz, CDCl₃)** δ 7.36-7.33 (m, 2H), 7.31-7.27 (m, 2H), 7.25-7.21 (m, 1H), 6.70-6.60 (m, 2H), 6.13 (d, *J* = 10.3 Hz, 1H), 6.01 (dd, *J* = 16.1, 6.1 Hz, 1H), 4.32-4.26 (m, 1H), 4.05-4.03 (m, 1H), 3.72 (dd, *J* = 11.8, 2.8 Hz, 1H), 3.55 (dd, *J* = 11.8, 10.4 Hz, 1H), 2.71 (d, *J* = 3.0 Hz, 2H), 1.42 (s, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 195.83, 152.26, 136.32, 132.98, 130.93, 128.68, 128.13, 126.66, 124.36, 78.20, 76.00, 71.51, 67.18, 42.18, 24.56.

IR (neat) 2970, 2862, 1738, 1684, 1372, 1118cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{19}O_3$: m/z 271.1334 [M+H]⁺, found: m/z 271.1329.

This compound was prepared according to the general procedure C as a pale-yellow solid (20mg, 72% yield in 0.1 mmol scale). d.r. = 20:1

¹**H** NMR (500 MHz, CDCl₃) δ 7.40-7.36 (m, 1H), 7.16-7.10 (m, 3H), 6.85 (dd, *J* = 16.0, 1.2 Hz, 1H), 6.68 (dd, *J* = 10.4, 2.8 Hz, 1H), 6.13 (d, *J* = 10.3 Hz, 1H), 5.89 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.34-4.27 (m, 1H), 4.07-4.02 (m, 1H), 3.74-3.68 (m, 1H), 3.57 (dd, *J* = 11.8, 10.3 Hz, 1H), 2.71 (d, *J* = 3.1 Hz, 2H), 2.31 (s, 3H), 1.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.82, 152.26, 135.74, 135.39, 130.97, 130.91, 130.43, 128.01, 126.19, 125.78, 125.71, 78.16, 76.28, 71.49, 67.27, 42.18, 24.56, 19.84.

IR (neat) 2968, 2863, 1741, 1683, 1372, 1120cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{18}H_{21}O_3$: m/z 285.1491 [M+H]⁺, found: m/z 285.1485.

This compound was prepared according to the general procedure C as a pale-yellow solid (24mg, 83% yield in 0.1 mmol scale). d.r. = 20:1

¹**H** NMR (500 MHz, CDCl₃) δ 7.21-7.12 (m, 3H), 7.07-7.03 (m, 1H), 6.70-6.57 (m, 2H), 6.13 (d, J = 10.4 Hz, 1H), 5.99 (dd, J = 16.1, 6.2 Hz, 1H), 4.31-4.25 (m, 1H), 4.06-4.02 (m, 1H), 3.71 (dd, J = 11.8, 2.7 Hz, 1H), 3.55 (dd, J = 11.8, 10.3 Hz, 1H), 2.71 (d, J = 3.1 Hz, 2H), 2.32 (s, 3H), 1.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 195.84, 152.27, 138.24, 136.26, 133.08, 130.93, 128.92, 128.58, 127.37, 124.17, 123.84, 78.19, 76.04, 71.50, 67.21, 42.19, 24.56, 21.47. IR (neat) 2970, 2861, 1737, 1684, 1372, 1121 cm⁻¹. **HRMS (ESI)** exact mass calcd for $C_{18}H_{21}O_3$: m/z 285.1491 [M+H]⁺, found: m/z 285.1488.

This compound was prepared according to the general procedure C as a pale-yellow solid (23mg, 82% yield in 0.1 mmol scale). d.r. = 40:1

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.24 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 6.68 (dd, *J* = 10.3, 2.8 Hz, 1H), 6.59 (dd, *J* = 16.1, 1.1 Hz, 1H), 6.13 (d, *J* = 10.3 Hz, 1H), 5.95 (dd, *J* = 16.1, 6.3 Hz, 1H), 4.30-4.24 (m, 1H), 4.05-4.03 (m, 1H), 3.71 (dd, *J* = 11.8, 2.8 Hz, 1H), 3.55 (dd, *J* = 11.8, 10.3 Hz, 1H), 2.71 (d, *J* = 3.1 Hz, 2H), 2.32 (s, 3H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.87, 152.33, 138.04, 133.54, 133.01, 130.93, 129.40, 126.59, 123.29, 78.20, 76.16, 71.49, 67.25, 42.20, 24.58, 21.35.

IR (neat) 2970, 2860, 1738, 1682, 1366, 1118cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{18}H_{21}O_3$: m/z 285.1491 [M+H]⁺, found: m/z 285.1492.

This compound was prepared according to the general procedure C as a pale-yellow solid (24mg, 81% yield in 0.1 mmol scale). d.r. = 15:1

¹**H NMR (500 MHz, CDCl**₃) δ 6.97 (s, 2H), 6.88 (s, 1H), 6.68 (dd, *J* = 10.4, 2.7 Hz, 1H), 6.56 (dd, *J* = 16.1, 1.2 Hz, 1H), 6.13 (d, *J* = 10.4 Hz, 1H), 5.98 (dd, *J* = 16.1, 6.3 Hz, 1H), 4.31-4.24 (m, 1H), 4.06-4.02 (m, 1H), 3.71 (dd, *J* = 11.8, 2.8 Hz, 1H), 3.54 (dd, *J* = 11.8, 10.3 Hz, 1H), 2.71 (d, *J* = 3.1 Hz, 2H), 2.28 (s, 3H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.91, 152.31, 138.14, 136.19, 133.17, 130.92, 129.86, 124.57, 123.95, 78.14, 76.08, 71.49, 67.23, 42.19, 24.55, 21.35.

IR (neat) 2968, 2862, 1738, 1683, 1372, 1119cm⁻¹.

HRMS (ESI) exact mass calcd for C₁₉H₂₃O₃: m/z 299.1647 [M+H]⁺, found: m/z 299.1642.

This compound was prepared according to the general procedure C as a pale-yellow solid (20mg, 69% yield in 0.1 mmol scale). d.r. = 40:1

¹**H** NMR (500 MHz, CDCl₃) δ 7.34-7.28 (m, 2H), 7.01-6.95 (m, 2H), 6.67 (dd, J = 10.4, 2.8 Hz, 1H), 6.62-6.56 (m, 1H), 6.13 (d, J = 10.3 Hz, 1H), 5.92 (dd, J = 16.1, 6.1 Hz, 1H), 4.30-4.24 (m, 1H), 4.06-4.02 (m, 1H), 3.72 (dd, J = 11.8, 2.7 Hz, 1H), 3.54 (dd, J = 11.8, 10.4 Hz, 1H), 2.71 (d, J = 3.1 Hz, 2H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.82 , 162.66 (d, J = 247.3 Hz), 152.22 , 132.51 (d, J = 3.3 Hz), 131.81 , 130.95 , 128.23 (d, J = 8.1 Hz), 124.11 (d, J = 2.2 Hz), 115.64 (d, J = 21.7 Hz), 78.24 , 75.88 , 71.53 , 67.16 , 42.19 , 24.55 .

IR (neat) 2970, 1738, 1683, 1372, 1121cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{18}FO_3$: m/z 289.1240 [M+H]⁺, found: m/z 289.1235.

This compound was prepared according to the general procedure C as a pale-yellow solid (22mg, 73% yield in 0.1 mmol scale). d.r. = 40:1

¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (s, 4H), 6.67 (dd, J = 10.3, 2.8 Hz, 1H), 6.58 (dd, J = 16.1, 1.4 Hz, 1H), 6.12 (d, J = 10.4 Hz, 1H), 5.98 (dd, J = 16.1, 6.0 Hz, 1H), 4.31-4.25 (m, 1H), 4.07-4.01 (m, 1H), 3.72 (dd, J = 11.8, 2.8 Hz, 1H), 3.53 (dd, J = 11.8, 10.4 Hz, 1H), 2.71 (d, J = 3.1 Hz, 2H), 1.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 195.77, 152.16, 134.86, 133.78, 131.62, 130.94, 128.86, 127.86, 125.04, 78.24, 75.77, 71.53, 67.07, 42.17, 24.52.

IR (neat) 2970, 1736, 1683, 1372, 1118cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{18}ClO_3$: m/z 305.0944 [M+H]⁺, found: m/z 305.0937.

This compound was prepared according to the general procedure C as a pale-yellow solid (26mg, 74% yield in 0.1 mmol scale). d.r. = 40:1

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 6.67 (dd, J = 10.4, 2.8 Hz, 1H), 6.56 (dd, J = 16.1, 1.4 Hz, 1H), 6.12 (d, J = 10.4 Hz, 1H), 6.00 (dd, J = 16.1, 6.0 Hz, 1H), 4.30-4.25 (m, 1H), 4.05-4.01 (m, 1H), 3.74-3.68 (m, 1H), 3.53 (dd, J = 11.8, 10.3 Hz, 1H), 2.71 (d, J = 3.0 Hz, 2H), 1.42 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.76, 152.15, 135.30, 131.82, 131.65, 130.95, 128.17, 125.17,

121.95, 78.24, 75.76, 71.54, 67.04, 42.17, 24.53.

IR (neat) 2970, 1738, 1684, 1372, 1119cm⁻¹.

HRMS (ESI) exact mass calcd for $C_{17}H_{18}BrO_3$: m/z 349.0439 [M+H]⁺, found: m/z 349.0432.

5. Relative configuration of 7a, 7l, 7m

Calculation method², ³, ⁴:

A preliminary conformational search was performed in Conflex6.7¹ using MMFF94s forcefield. Conformers were saved and further optimized using B3LYP/6-311++G(d,p) level with CPCM solvent model in Gaussian 09 software package.² Frequency was calculated at the same level to check optimized results. The stable conformers with populations greater than 1% and without imaginary frequencies were submitted to ECD calculation by the TDDFT (cam-B3LYP/TZVP) method associated with CPCM solvent model in MeCN. The excitation energies (E), oscillator strength (f), rotatory strength in velocity form (Rvel), and rotatory strength in length form (Rlen) of the lowest 32 excited states were calculated. ECD spectra of different conformers were summated in SpecDis³ according to their Boltzmann-calculated distributions.

Table of Energy analysis					
conformer E(a.u.)		ΔE(kcal/mol)	Boltz Distribution(%)		
1a-1CD	-923.4353037	0.0464357	24.17		
1a-2CD	-923.4353777	0.0000000	26.15		
1a-3CD	-923.4347545	0.3910642	13.50		
1a-6CD	-923.4347781	0.3762550	13.85		
1a-7CD	-923.4342613	0.7005522	8.01		
1a-8CD	-923.4348101	0.3561747	14.32		

Comparison of CD Curve :

Best Similarity factor (S = 0.9744) was found for sigma =0.3 eV at 7 nm shift

² Conflex 6.7, Conflex Corp.: Tokyo Yokohama, Japan, 2010; Conflex Corp.: Tokyo Yokohama, Japan

³ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09 revision D.01; Gaussian Inc.: Wallingford CT, 2013.

⁴ Bruhn, T.; Schaumloeffel, A.; Hemberger, Y.; Bringmann, G. Chirality **2013**, 25, 243–249.

6. X-ray data of 7m

data_mo_dm15200_0m

_audit_creation_method	SHELXL-97
_chemical_name_systematic	
;	
?	
;	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	?
_chemical_formula_sum	
'C20 H21 O3'	
_chemical_formula_weight	309.37

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting ? _symmetry_space_group_name_H-M ? loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2'

_cell_length_a	11.954(2)
_cell_length_b	9.2780(18)
_cell_length_c	12.604(2)
_cell_angle_alpha	90.00
_cell_angle_beta	93.422(3)
_cell_angle_gamma	90.00
_cell_volume	1395.4(5)
_cell_formula_units_Z	4
_cell_measurement_temperature	296(2)
_cell_measurement_refIns_used	?
_cell_measurement_theta_min	?
_cell_measurement_theta_max	?
_exptl_crystal_description	?
_exptl_crystal_colour	?
_exptl_crystal_size_max	0.15
_exptl_crystal_size_mid	0.10
aventl arrivatal size min	0.05

F	-
_exptl_crystal_size_max	0.15
_exptl_crystal_size_mid	0.10
_exptl_crystal_size_min	0.05
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.473
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	660
_exptl_absorpt_coefficient_mu	0.098
_exptl_absorpt_correction_type	?
_exptl_absorpt_correction_T_min	0.9855
_exptl_absorpt_correction_T_max	0.9951
_exptl_absorpt_process_details	?

_exptl_special_details

```
;
?
```

;

_diffrn_ambient_temperature	296(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK\a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	?
_diffrn_measurement_method	?

$_diffrn_detector_area_resol_mean$?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	13661
_diffrn_reflns_av_R_equivalents	0.0602
_diffrn_reflns_av_sigmaI/netI	0.0719
_diffrn_reflns_limit_h_min	-17
_diffrn_reflns_limit_h_max	17
_diffrn_reflns_limit_k_min	-13
_diffrn_reflns_limit_k_max	13
_diffrn_reflns_limit_l_min	-14
_diffrn_reflns_limit_l_max	18
_diffrn_reflns_theta_min	1.71
_diffrn_reflns_theta_max	30.56
_reflns_number_total	4258
_reflns_number_gt	2117
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	?
_computing_cell_refinement	?
_computing_data_reduction	?
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	?
_computing_publication_material	?

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

;

Fsqd
full
calc
$P^{2^{+0.000P}}$ where $P=(Fo^{2^{+2}Fc^{2^{-2}}})/3'$
direct
difmap
geom
mixed

_refine_ls_extinction_method	none
_refine_ls_extinction_coef	?
_refine_ls_number_reflns	4258
_refine_ls_number_parameters	182
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.2297
_refine_ls_R_factor_gt	0.1489
_refine_ls_wR_factor_ref	0.4561
_refine_ls_wR_factor_gt	0.4068
_refine_ls_goodness_of_fit_ref	1.460
_refine_ls_restrained_S_all	1.460
_refine_ls_shift/su_max	0.000
_refine_ls_shift/su_mean	0.000

loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group O1 O 0.0080(3) 0.8965(4) 0.2508(3) 0.0417(9) Uani 1 1 d . . . C14 C 0.1181(3) 1.0283(5) 0.1355(4) 0.0311(10) Uani 1 1 d . . . H14 H 0.0898 1.1168 0.1557 0.037 Uiso 1 1 calc R ... C15 C 0.1955(5) 1.0227(6) 0.0665(5) 0.0456(13) Uani 1 1 d . . . H15 H 0.2223 1.1100 0.0421 0.055 Uiso 1 1 calc R . . C16 C 0.2450(3) 0.8867(5) 0.0231(3) 0.0261(9) Uani 1 1 d ... O3 O 0.3610(3) 0.9024(5) 0.0058(3) 0.0475(11) Uani 1 1 d . . . C10 C 0.4276(4) 0.9290(7) 0.1035(5) 0.0492(14) Uani 1 1 d . . . H10A H 0.4012 1.0151 0.1378 0.059 Uiso 1 1 calc R . . H10B H 0.5055 0.9435 0.0884 0.059 Uiso 1 1 calc R . . C9 C 0.4176(4) 0.8022(6) 0.1749(4) 0.0397(12) Uani 1 1 d . . . H9 H 0.4415 0.7152 0.1384 0.048 Uiso 1 1 calc R . . C8 C 0.4839(4) 0.8173(6) 0.2776(4) 0.0416(12) Uani 1 1 d . . . H8 H 0.4506 0.7916 0.3397 0.050 Uiso 1 1 calc R . . C7 C 0.5905(4) 0.8666(7) 0.2854(4) 0.0456(14) Uani 1 1 d . . . H7 H 0.6197 0.8966 0.2223 0.055 Uiso 1 1 calc R . . C4 C 0.6658(3) 0.8786(5) 0.3811(4) 0.0308(10) Uani 1 1 d . . . C5 C 0.7811(3) 0.8883(4) 0.3705(4) 0.0269(9) Uani 1 1 d . . . H5 H 0.8084 0.8901 0.3030 0.032 Uiso 1 1 calc R . . C6 C 0.8560(4) 0.8953(5) 0.4593(4) 0.0316(10) Uani 1 1 d . . .

H6 H 0.9326 0.8994 0.4508 0.038 Uiso 1 1 calc R . . C1 C 0.8165(4) 0.8960(5) 0.5598(4) 0.0386(11) Uani 1 1 d ... H1 H 0.8665 0.9020 0.6191 0.046 Uiso 1 1 calc R . . C13 C 0.0749(3) 0.8913(5) 0.1823(4) 0.0293(9) Uani 1 1 d . . . C12 C 0.1143(3) 0.7531(5) 0.1372(3) 0.0258(9) Uani 1 1 d . . . H12A H 0.1119 0.6781 0.1906 0.031 Uiso 1 1 calc R ... H12B H 0.0641 0.7255 0.0773 0.031 Uiso 1 1 calc R . . C11 C 0.2305(4) 0.7646(5) 0.1015(4) 0.0389(12) Uani 1 1 d ... H11 H 0.2513 0.6733 0.0689 0.047 Uiso 1 1 calc R . . O2 O 0.3013(3) 0.7879(4) 0.1982(3) 0.0367(9) Uani 1 1 d . . . C17 C 0.1918(4) 0.8601(8) -0.0853(4) 0.0517(15) Uani 1 1 d . . . H17A H 0.1893 0.9485 -0.1250 0.078 Uiso 1 1 calc R . . H17B H 0.1170 0.8246 -0.0794 0.078 Uiso 1 1 calc R . . H17C H 0.2348 0.7900 -0.1214 0.078 Uiso 1 1 calc R ... C2 C 0.7015(4) 0.8879(6) 0.5725(4) 0.0393(12) Uani 1 1 d . . . H2 H 0.6748 0.8865 0.6403 0.047 Uiso 1 1 calc R . . C3 C 0.6270(4) 0.8817(6) 0.4837(4) 0.0378(12) Uani 1 1 d . . . H3 H 0.5503 0.8796 0.4926 0.045 Uiso 1 1 calc R . .

loop_

```
_atom_site_aniso_label
```

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

```
O1 0.0291(16) 0.059(2) 0.038(2) 0.0035(16) 0.0121(14) -0.0018(15)
C14 0.0226(19) 0.030(2) 0.040(3) 0.0021(19) 0.0006(17) 0.0021(16)
C15 0.049(3) 0.037(3) 0.052(3) 0.004(2) 0.012(2) -0.014(2)
C16 0.0186(17) 0.036(2) 0.024(2) 0.0036(17) 0.0030(15) -0.0044(16)
O3 0.0197(15) 0.100(3) 0.0223(17) 0.0109(17) 0.0002(12) -0.0101(16)
C10 0.024(2) 0.070(4) 0.053(4) 0.011(3) 0.000(2) -0.013(2)
C9 0.022(2) 0.047(3) 0.050(3) -0.001(2) 0.0011(19) -0.0027(19)
C8 0.027(2) 0.060(3) 0.038(3) 0.005(2) 0.0032(19) -0.002(2)
C7 0.027(2) 0.077(4) 0.033(3) 0.007(2) 0.004(2) -0.001(2)
C4 0.0184(18) 0.045(3) 0.029(2) 0.0059(19) 0.0008(16) 0.0046(17)
C5 0.0205(18) 0.031(2) 0.029(2) 0.0020(17) 0.0022(15) 0.0019(15)
C6 0.0232(19) 0.035(2) 0.037(3) -0.0014(19) -0.0002(17) -0.0014(17)
C1 0.034(2) 0.047(3) 0.034(3) 0.001(2) -0.0070(19) 0.002(2)
C13 0.0190(17) 0.040(2) 0.028(2) 0.0057(18) 0.0014(15) 0.0008(17)
C12 0.0193(17) 0.033(2) 0.025(2) 0.0029(16) -0.0001(15) -0.0059(15)
C11 0.040(3) 0.034(2) 0.044(3) 0.009(2) 0.016(2) 0.006(2)
O2 0.0262(15) 0.044(2) 0.039(2) 0.0032(15) 0.0006(13) -0.0032(13)
C17 0.030(2) 0.096(5) 0.029(3) 0.000(3) 0.000(2) 0.003(3)
C2 0.037(3) 0.054(3) 0.027(2) 0.001(2) 0.0050(19) 0.003(2)
C3 0.024(2) 0.059(3) 0.031(3) 0.007(2) 0.0072(18) 0.007(2)
```

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

;

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C13 1.213(5).? C14 C15 1.309(7) . ? C14 C13 1.505(6) . ? C14 H14 0.9300 . ? C15 C16 1.510(7).? C15 H15 0.9300 . ? C16 O3 1.424(5) . ? C16 C17 1.493(7) . ? C16 C11 1.520(6) . ? O3 C10 1.448(6) . ? C10 C9 1.490(8).? C10 H10A 0.9700 . ? C10 H10B 0.9700 . ? C9 O2 1.444(5).? C9 C8 1.484(7).? C9 H9 0.9800 . ? C8 C7 1.352(7).? C8 H8 0.9300 . ? C7 C4 1.465(7).? C7 H7 0.9300 . ? C4 C5 1.395(6).? C4 C3 1.400(7).? C5 C6 1.392(6) . ? C5 H5 0.9300 . ? C6 C1 1.378(7).? C6 H6 0.9300 . ? C1 C2 1.395(7).? C1 H1 0.9300 . ? C13 C12 1.490(6) . ? C12 C11 1.488(6).? C12 H12A 0.9700 . ? C12 H12B 0.9700 . ?

C11 O2 1.459(6) . ? C11 H11 0.9800 . ? C17 H17A 0.9600 . ? C17 H17B 0.9600 . ? C17 H17C 0.9600 . ? C2 C3 1.390(7) . ? C2 H2 0.9300 . ? C3 H3 0.9300 . ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C15 C14 C13 120.0(4) . . ? C15 C14 H14 120.0 . . ? C13 C14 H14 120.0 . . ? C14 C15 C16 125.6(4) . . ? C14 C15 H15 117.2 . . ? C16 C15 H15 117.2 . . ? O3 C16 C17 104.0(4) . . ? O3 C16 C15 112.1(4) . . ? C17 C16 C15 108.4(4) . . ? O3 C16 C11 109.0(3) . . ? C17 C16 C11 114.4(4) . . ? C15 C16 C11 108.9(4) . . ? C16 O3 C10 112.2(3) . . ? O3 C10 C9 108.6(4) . . ? O3 C10 H10A 110.0 . . ? C9 C10 H10A 110.0 . . ? O3 C10 H10B 110.0 . . ? C9 C10 H10B 110.0 . . ? H10A C10 H10B 108.3 . . ? O2 C9 C8 107.6(4) . . ? O2 C9 C10 108.0(4) . . ? C8 C9 C10 113.2(4) . . ? O2 C9 H9 109.3 . . ? C8 C9 H9 109.3 . . ? C10 C9 H9 109.3 . . ? C7 C8 C9 123.2(5) . . ? C7 C8 H8 118.4 . . ? C9 C8 H8 118.4 . . ? C8 C7 C4 128.0(5) . . ? C8 C7 H7 116.0 . . ? C4 C7 H7 116.0 . . ?

C5 C4 C3 118.1(4) . . ? C5 C4 C7 119.2(4) . . ? C3 C4 C7 122.7(4) . . ? C6 C5 C4 121.2(4) . . ? C6 C5 H5 119.4 . . ? C4 C5 H5 119.4 . . ? C1 C6 C5 120.1(4) . . ? C1 C6 H6 120.0 . . ? C5 C6 H6 120.0 . . ? C6 C1 C2 119.9(4) . . ? C6 C1 H1 120.1 . . ? C2 C1 H1 120.1 . . ? O1 C13 C12 122.9(4) . . ? O1 C13 C14 120.1(4) . . ? C12 C13 C14 117.0(4) . . ? C11 C12 C13 112.1(4) . . ? C11 C12 H12A 109.2..? C13 C12 H12A 109.2..? C11 C12 H12B 109.2 . . ? C13 C12 H12B 109.2 . . ? H12A C12 H12B 107.9 . . ? O2 C11 C12 105.3(4) . . ? O2 C11 C16 110.5(4) . . ? C12 C11 C16 113.3(4) . . ? O2 C11 H11 109.2..? C12 C11 H11 109.2..? C16 C11 H11 109.2..? C9 O2 C11 111.2(4) . . ? C16 C17 H17A 109.5 . . ? C16 C17 H17B 109.5 . . ? H17A C17 H17B 109.5 . . ? C16 C17 H17C 109.5 ...? H17A C17 H17C 109.5 . . ? H17B C17 H17C 109.5 . . ? C3 C2 C1 119.9(4) . . ? C3 C2 H2 120.0 . . ? C1 C2 H2 120.0 . . ? C2 C3 C4 120.9(4) . . ? C2 C3 H3 119.6 . . ? C4 C3 H3 119.6 . . ?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C13 C14 C15 C16 2.9(8) ? C14 C15 C16 O3 -144.4(5)? C14 C15 C16 C17 101.4(6)? C14 C15 C16 C11 -23.6(7) ? C17 C16 O3 C10 -179.8(4)? C15 C16 O3 C10 63.3(5)? C11 C16 O3 C10 -57.4(5) ? C16 O3 C10 C9 62.3(5) ? O3 C10 C9 O2 -61.6(5)? O3 C10 C9 C8 179.4(4) ? O2 C9 C8 C7 -163.7(5) ? C10 C9 C8 C7 -44.5(7) ? C9 C8 C7 C4 -176.4(5) ? C8 C7 C4 C5 160.0(6) ? C8 C7 C4 C3 -20.4(9) ? $C3 C4 C5 C6 2.4(7) \dots ?$ C7 C4 C5 C6 -177.9(4) ? C4 C5 C6 C1 -1.5(7) ? C5 C6 C1 C2 0.8(7) ? C15 C14 C13 O1 175.7(5)? C15 C14 C13 C12 -6.8(7) ? O1 C13 C12 C11 -150.2(4) ? C14 C13 C12 C11 32.4(5)? C13 C12 C11 O2 66.0(4)? C13 C12 C11 C16 -54.8(5)? O3 C16 C11 O2 53.8(5) ? C17 C16 C11 O2 169.8(4) ? C15 C16 C11 O2 -68.8(5)? O3 C16 C11 C12 171.6(4) ? C17 C16 C11 C12 -72.4(5)? C15 C16 C11 C12 49.0(5)? C8 C9 O2 C11 -176.9(4) ? C10 C9 O2 C11 60.6(5)? C12 C11 O2 C9 -179.6(4) ? C16 C11 O2 C9 -57.0(5) ? C6 C1 C2 C3 -1.2(8)? C1 C2 C3 C4 2.2(8) ? C5 C4 C3 C2 -2.8(7) . . . ? C7 C4 C3 C2 177.6(5)?

_diffrn_measured_fraction_theta_max	0.995
_diffrn_reflns_theta_full	30.56
_diffrn_measured_fraction_theta_full	0.995
_refine_diff_density_max 2.759	

_refine_diff_density_min -0.556 _refine_diff_density_rms 0.147

7. Chirality transfer studies

The enantiomeric excess of **51** was found to be 96% by chiral HPLC (ChiralPak PA-2 column, hexane/*i*-PrOH 80:20 0.7 mL/min, $t_{major} = 20.00$ min, $t_{minor} = 22.07$ min).

Condition A : Re_2O_7 , $\operatorname{CH}_2\operatorname{Cl}_2$, 0°C

The enantiomeric excess of 71 was found to be 85% by chiral HPLC (ChiralPak IC column,

hexane/*i*-PrOH 90:10 0.7 mL/min, $t_{major} = 22.04 \text{ min}, t_{minor} = 25.81 \text{ min}$).

Condition B : Ph₃SiO-ReO₃, Et₂O, -78 $^{\circ}$ C

The enantiomeric excess of **7l** was found to be 92% by chiral HPLC (ChiralPak IC column, hexane/*i*-PrOH 90:10 0.7 mL/min, $t_{major} = 22.33$ min, $t_{minor} = 26.10$ min).

The enantiomeric excess of **5m** was found to be 99% by chiral HPLC (ChiralPak AD-H column, hexane/*i*-PrOH 80:20 0.7 mL/min, $t_{major} = 12.08 \text{ min}$, $t_{minor} = 12.87 \text{ min}$).

Condition A : Re_2O_7 , CH_2Cl_2 , 0°C

The enantiomeric excess of 7m was found to be 0% by chiral HPLC (ChiralPak IC column,

hexane/*i*-PrOH 90:10 0.7 mL/min, $t_{major} = 24.95 \text{ min}, t_{minor} = 28.11 \text{ min}$).

Condition B : $Ph_3SiO-ReO_3$, Et_2O , -78°C

The enantiomeric excess of **7m** was found to be 81% by chiral HPLC (ChiralPak IC column, hexane/*i*-PrOH 90:10 0.7 mL/min, $t_{major} = 25.67 \text{ min}, t_{minor} = 29.35 \text{ min}$).

Operator:Administrator Timebase:HPLC Sequence:201310-DAD

Page 1-1 2014-9-26 1:42 下午

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре	1
1	19.80	n.a.	224.552	106.502	49.83	n.a.	BM *	
2	21.56	n.a.	199.883	107.239	50.17	n.a.	MB*	
Total:			424.435	213.741	100.00	0.000		

defltdad/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR14 Build 4527 (238909 Operator:Administrator Timebase:HPLC Sequence:201310-DAD

Page 1-2014-12-16 7:33 下有

3745 HJD-2-23 PA-2 82 214 0.7 Sample Name: HJD-2-23 PA-2 82 214 0.7 Injection Volume: 2.0 Vial Number: BC1 ; UV_VIS_2 Channel: Sample Type: unknown Wavelength: 214.0 Control Program: test-dad2 Bandwidth: 4 Quantif. Method: WXL Dilution Factor: 1.0000 Sample Weight: Recording Time: 2014-12-16 17:23 1.0000 Run Time (min): 1.0000 Sample Amount: 30.00

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
d share	min		mAU	mAU*min	%		
1	20.00	n.a.	1599.679	831.120	98.08	n.a.	M *
2	22.07	n.a.	27.780	16.286	1.92	n.a.	MB*
Total:			1627.459	847.406	100.00	0.000	

Instrument:U3000 Sequence:20160303

Chromatogram and Results						
Injection Details						
Injection Name:	HJD+- IC 91 214 0.7	Run Time (min):	50.00			
Vial Number:	RC2	Injection Volume:	5.00			
Injection Type:	Unknown	Channel:	UV_VIS_1			
Calibration Level:		Wavelength:	214.0			
Instrument Method:	20160223-DAD2	Bandwidth:	4			
Processing Method:	20160223	Dilution Factor:	1.0000			
Injection Date/Time:	28/三月/16 18:04	Sample Weight:	1.0000			

Chromeleon (c) Dionex Version 7.2.0.3765

20160223/Integration

Operator:GC Timebase:U3000 Sequence:WXL-2

Page 1-1 2014/12/10 7:09 下午

2384 HJD-2-18-2 IC 91 214 0.7					
Sample Name: Vial Number:	HJD-2-18-2 IC 91 214 0.7 BA2	Injection Volume: Channel: Wavelength:	5.0 UV_VIS_1 214		
Sample Type:		Bandwidth:	n.a.		
Ouantif Method:	WXI	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	2014/12/10 16:45 41.24	Sample Weight: Sample Amount:	1.0000 1.0000		

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	22.04	na	1797.691	872.109	88.86	n.a.	BMB*
2	25.81	n.a.	138.793	71.501	7.29	n.a.	BMB*
3	27.65	n.a.	25.475	13.746	1.40	n.a.	BMB*
4	36.13	n.a.	33.939	24.113	2.46	n.a.	BMB*
Total:			1995.898	981.468	100.00	0.000	

R=Br, Re=07, 042012, 0°C. yield=73%, 35% e.e.

DEFAULT/Integration

Chromeleon (c) Dionex 1996-200 Version 6.80 SR12 Build 3578 (20716
Operator:GC Timebase:U3000 Seque	ence:WXL-2
----------------------------------	------------

Page 1 2014/12/26 10:35 下

2542 HJD-2-37-5 IC 91 214 0.7								
Sample Name:	HJD-2-37-5 IC 91 214 0.7	Injection Volume:	3.0					
Vial Number:	RE5 /	Channel:	UV_VIS_1					
Sample Type:	unknown	Wavelength:	214					
Control Program:	WXL-2014-1	Bandwidth:	n.a.					
Quantif. Method:	WXL	Dilution Factor:	1.0000					
Recording Time:	2014/12/26 21:10	Sample Weight:	1.0000					
Run Time (min):	45.00	Sample Amount:	1.0000					

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		_
1	22.33	n.a.	660.986	299.670	92.68	n.a.	BM *
2	26.10	n.a.	22.249	11.812	3.65	n.a.	MB*
3	27.89	n.a.	4.918	2.934	0.91	n.a.	BM *
4	36.75	n.a.	12.048	8.918	2.76	n.a.	BM *
Total:			700.201	323.334	100.00	0.000	

DEFAULT/Integration

Chromeleon (c) Dionex 1996-20 Version 6.80 SR12 Build 3578 (20716 Operator:Administrator Timebase:HPLC Sequence:201310-DAD

Page 1-′ 2014-9-17 4:15 下午

2944 XZL-2041-1+- AD-H 82 214 0.7							
Sample Name:	XZL-2041-1+- AD-H 82 214 0.7	Injection Volume:	1.0				
Vial Number:	BD3 j'	Channel:	UV_VIS_2				
Sample Type:	unknown	Wavelength:	214.0				
Control Program:	test-dad	Bandwidth:	4				
Quantif. Method:	WXL	Dilution Factor:	1.0000				
Recording Time:	2014-9-17 14:48	Sample Weight:	1.0000				
Run Time (min):	17.64	Sample Amount:	1.0000				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
-	min		mAU	mAU*min	%		
1	13.28	n.a.	650.070	176.544	50.99	n.a.	BM *
2	14.17	n.a.	.583.902	169.693	49.01	n.a.	MB*
Total:			1233.973	346.237	100.00	0.000	

defltdad/Integration

Chromeleon (c) Dionex 1996-200 Version 6.80 SR10 Build 2818 (166959 Operator:GC Timebase:U3000 Sequence:WXL-2

Page 1 2014/11/18 10:12 上

2160 HJD-1-9	95 AD-H 82 214 0.7		24
Sample Name:	HJD-1-95 AD-H 82 214 0.7	Injection Volume:	3.0
Vial Number:	RC5 🦿	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	214
Control Program:	WXL-2014-1	Bandwidth:	n.a.
Quantif. Method:	WXL	Dilution Factor:	1.0000
Recording Time:	2014/11/17 16:32	Sample Weight:	1.0000
Run Time (min);	29.58	Sample Amount:	1.0000

NO.	min	Peak Name	Height mAU	Area mAU*min	Rel.Area	Amount	Туре	
1	12.08	n.a.	868 954	221 803	00.90		-	_
2	12.87	na	1 562	221.093	99.00	n.a.	BW *	
Total		ma.	1.505	0.441	0.20	n.a.	MB*	
rotal.			870.516	222.334	100.00	0.000		

DEFAULT/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR12 Build 3578 (207169) Operator:GC Timebase:U3000 Sequence:WXL-2

Page 1-1 2014/12/10 7:11 下午

2385 HJD-2-18-3 IC 91 214 0.7							
Sample Name: Vial Number:	HJD-2-18-3 IC 91 214 0.7	Injection Volume: Channel:	5.0 UV VIS 1				
Sample Type:	unknown	Wavelength:	214				
Control Program:	WXL-2014-2	Bandwidth:	n.a.				
Quantif. Method:	WXL	Dilution Factor:	1.0000				
Recording Time:	2014/12/10 17:30	Sample Weight:	1.0000				
Run Time (min):	55.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	24.93	n.a.	595.372	294.843	47.57	n.a.	BMB*
2	28.10	n.a.	518.952	295.726	47.72	n.a.	MB*
3	34.40	n.a.	21.235	14.662	2.37	n.a.	BMB*
4	42.21	n.a.	17.004	14.533	2.34	n.a.	BMB*
Total:			1152.563	619.764	100.00	0.000	

R=Ph, +/-

DEFAULT/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR12 Build 3578 (207169)

Page 1-1 2014/12/10 7:14 下午

Operator:GC Timebase:U3000 Sequence:WXL-2

2386 HJD-2-18-4 IC 91 214 0.7 5.0 UV_VIS_1 HJD-2-18-4 IC 91 214 0.7 Injection Volume: Sample Name: Channel: Vial Number: BA4 ; Wavelength: 214 Sample Type: unknown Bandwidth: n.a. WXL-2014-2 Control Program: 1.0000 Dilution Factor: Quantif. Method: WXL 1.0000 Sample Weight: 2014/12/10 18:27 Recording Time: 1.0000 Sample Amount: Run Time (min): 45.59

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	24.95	na	757.057	375.974	48.86	n.a.	BMB*
2	28.11	na	649.689	370.434	48.14	n.a.	MB*
2	34.43	na	16.716	11.517	1.50	n.a.	BMB*
1	42.74	n.a.	13.499	11.506	1.50	n.a.	BMB*
Total:	74.27		1436.961	769.432	100.00	0.000	

DEFAULT/Integration

Chromeleon (c) Dionex 1996-200 Version 6.80 SR12 Build 3578 (20716§ Operator:GC Timebase:U3000 Sequence:WXL-2

Page 1-1 2014/12/4 9:00 下午

2318 HJD-10-1-1 IC 91 214 0.7							
Sample Name:	HJD-10-1-1 IC 91 214 0.7	Injection Volume:	5.0				
Vial Number:	BA3 ,'	Channel:	UV_VIS_1				
Sample Type:	unknown	Wavelength:	214				
Control Program:	WXL-2014-2	Bandwidth:	n.a.				
Quantif. Method:	WXL	Dilution Factor:	1.0000				
Recording Time:	2014/12/4 15:58	Sample Weight:	1.0000				
Run Time (min):	50.01	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	25.67	n.a.	921.507	528.676	88.10	n.a.	BMB*
2	29.35	n.a.	82.953	54.254	9.04	n.a.	BMB*
3	35.93	n.a.	1.898	1.357	0.23	n.a.	BMB*
4	44.11	n.a.	15.976	15.770	2.63	n.a.	BMB*
Total:			1022.335	600.058	100.00	0.000	

DEFAULT/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR12 Build 3578 (207169)

8. Copies of spectrums

$\begin{bmatrix} 6.76 \\ 6.75 \\ 6.75 \\ 6.74 \\ 6.39 \\ 6.39 \\ 6.39 \\ 6.39 \\ 6.39 \\ 6.31 \\ 6.37 \\ 7.588 \\ 6.37 \\ 7.588$

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S47

S52

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S58

S63

S74

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

10 0 -10

210 200 190

S77

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

