Cyanide-free Electrolyte for Au(III) and Au(I) Electrodepositing

Using DMH as Complexing Agent

Gong Luo, Guohui Yuan* and Ning Li**

Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China

* E-mail address: ygh@hit.edu.cn, lininghit@263.net

Experimental

The electrodepositing current densities using in Au(III) and Au(I) electrolytes are 8mA/cm², 2mA/cm², respectively. And a titanium electrode covered by iridium oxide (working area was 2×2 cm²) was used as electrodepositing anode. Scanning electron microscopy (SEM) and a scanner were used to analysis micromorphology and macromorphology of the gold layers, respectively. The element contents of gold layer were determined by Energy Dispersive Spectrometer (EDS). X-ray fluorescence (OXFORD CMI900) was used to measure the thickness of the gold layer. And HV-1000 Vickers microhardness tester of Shanghai Shangcai Testermachine Co.,Ltd. was used to measure the microhardness of the Cu sheet electrodeposited gold film. All electrochemical measurements were using a three-electrode electrochemical cell on a CHI760D electrochemical workstation. A saturated calomel electrode (SCE) and titanium electrode covered by iridium oxide (the electrode work area was 2×2 cm²) were used as reference and counter electrodes, respectively. A copper electrode with work size of 2×2 cm² is used as work cathode, where gold films are deposited. Polarization curves from -0.2 V to -1.5 V, were carried out with a sweep rate of 100 mV/ s. All electrochemical measurements performed at room temperature, and all potentials presented in the article are versus SCE.

Constituent	g /L		
NaAuCl ₄	5		
DMH	13		
C6H8O7	40		
КОН	Variable		
рН	Variable		
Room temperature			

Table SI. Composition of Au(III) electrodepositing bath.

Table SII. Composition of Au(I) electrodepositing bath.

Constituent	g /L		
Na ₃ Au(SO ₃) ₂	5		
DMH	13		
C6H8O7	40		
КОН	Variable		
рН	Variable		
Room temperature			

Table S III Microhardness of electrodepositing layers obtained from each electrolyte

sample	1	2	3	4	5	6
Hardness (HV)	123.7	129.7	145.8	165.6	157.3	136.1

Fig. S1 Rockwell indentation images of each sample; testing force were 200g, holding time were 15s.

Fig. S2 Photographs of gold electrolytes and gold salt solution placed 2 weeks; all electrolytes had good stability except Au(I) salt solution.