Supporting Information

Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation

Sangeeta Adhikari¹, Rimzhim Gupta¹, Angelica Surin², T. Satish Kumar², Subhabrata

Chakraborty², Debasish Sarkar², Giridhar Madras^{1*}

¹Department of Chemical Engineering, Indian Institute of Science, Bangalore, India ²Department of Ceramic Engineering, National Institute of Technology, Rourkela, Orissa, India

Figure S1: Effect of H₂O₂ on the degradation of Crystal Violet dye (Initial dye concentration = 20 mg L^{-1} , catalyst loading = 50 mg L^{-1} , temperature = $25 \pm 2^{\circ}$ C, pH ~7, and solar intensity = 0.768 kW m^{-2})

Figure S2. Pseudo first order kinetics for photolysis, spongy-ZnO and P-25 TiO₂. (Initial concentration ~10⁸ CFU/ml, catalyst loading = 0.25 g/L, temperature = $25 \pm 2^{\circ}$ C, and visible light intensity = 42800 lux)

Figure S3. Effect of hydrogen peroxide on inactivation of *E.coli* under visible irradiation with initial concentration 10^{8} CFU/mL for 0, 2.0, 10.0, 100.0, 250.0 and 500.0 mM concentration of H₂O₂ in presence of 0.25 g/L ZnO.

Figure S4. Pseudo first order kinetics 0, 2.0, 10.0, 100.0, 250.0 and 500.0 mM concentration of H_2O_2 in presence of 0.25 g/L ZnO.

Figure S5. Variation of rate constant with H_2O_2 concentration. (The inset represents the relationship between concentration/rate constant of the reactions performed at 0, 2.0, 10.0, 100.0, 250.0 and 500.0 mM concentration of H_2O_2)