Electronic Metal–Support Interactions Enhance the Ammonia Synthesis

Activity over Ruthenium Supported on Zr-modified CeO₂ catalysts

Zhanwei Ma,^{ab} Xumao Xiong,^a Chengli Song^a, Bin Hu^{a*} and Weiqiang Zhang^c

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute

of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Changchun Zhongke Haorong New Material Research Co., Ltd.

Corresponding author,

E-mail: Hcom@licp.cas.cn

1. Experimental section

1.1 Materials and Instruments

All chemicals were analytical grade and used directly without any further purification. They were purchased from Aladdin Industrial Corporation in China. Deionized water with a resistivity of $18.25 \text{ M}\Omega$.cm was used in all reactions.

The crystalline structure of the samples was analyzed by X-ray powder diffraction (XRD) (X'pert, PANalytical, Dutch) using Cu K α radiation (λ = 1.54050 Å). Transmission electron microscope (TEM) experiments were conducted in a JEM-2010 TEM with an accelerating voltage of 200 KV. Temperature programmed reduction (TPR) profiles of the samples were generated on a TP-5080 catalyst characterization instrument. H₂/Ar (10 % of H₂) mixture was used as the reducing gas and heated at a linear heating ramp of 10 K/min from 298 to 1173 K. UV-visible diffuse reflectance spectra were taken on a UV-2550 (Shimadzu) spectrometer using BaSO₄ as the reference. The element composition was detected by X-ray photoelectron spectrometer (XPS, ESCALAB 250Xi). The photoluminescence (PL) spectra were detected with an F-7000 spectrofluorometer (Hitachi High-Technologies, Tokyo, Japan). Raman spectra of samples were recorded on Renishaw RM1000 (λ =514.5 nm). The percentage composition of Ru was determined by XRF on MagixPW2403.

1.2 Support and catalyst preparation

 $Ce_xZr_{1-x}O_2$ supports were synthesized with different Ce/(Ce+Zr) molar ratios (x = 0, 0.6, 0.8, and 1.0) via a citric acid sol-gel process using Ce(NO₃)₃·6H2O and $Zr(NO_3)_4$ ·4H₂O as precursors. First, the solutions of Ce(NO₃)₃·6H₂O and $Zr(NO_3)_4$ ·4H₂O

in deionized water (total amount of Ce and Zr = 5 mmol,molar ratio of $Ce^{3+}/(Ce^{3+}+Zr^{4+}) = x$, 30 mL) were poured into a 100-mL beaker. A solution of citric acid in deionized water (0.5 mmol/mL, 10 mL) was then directly added with stirring. The mixture was stirred for a further 12 h at room temperature, and then the xerogel was obtained after the solvent was evaporated at 383K. The xerogel was then calcined at 823 K in air for 4 h. The support was heated at 2.3 K/min from room temperature to 573 K, held at 573 K for 30 min, then heated at a rate of 4 K/min from 573 to 823 K.

The supports $Ce_xZr_{1-x}O_2$ were stirred with a solution of ruthenium carbonyl in THF at room temperature for 12 h in a rotary evaporator. Then, the THF solvent was removed under reduced pressure at 303 K. The gray powder was calcined at 573 K for 3 h under hydrogen atmosphere, followed by cooling in hydrogen atmosphere to room temperature.

Measurements of catalytic activity

In ammonia synthesis reaction, 0.2 g catalyst samples were used for each experiment. A stainless steel reactor with an inner diameter of 6 mm was used. The catalyst was first heated in mixture of N_2 : H_2 (1:3) to 673K at a heating rate of 5 K/min and then held at 673K for 2 h. Finally the temperature was adjusted to the required value for the ammonia synthesis reaction. The mixture of N_2 : H_2 (1:3) with a flow rate of 60 mL/min was used as reactant. All the reactions were performed at presure 1 MPa. A Shimadzu GC-8A gas chromatograph equipped with a TCD was employed to measure the composition of product gas. Argon was used as the carrier gas.

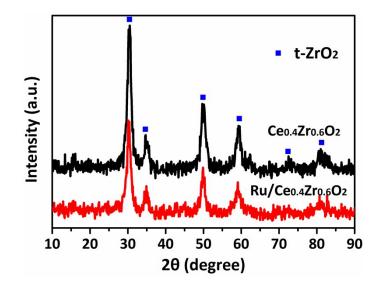


Figure S1. the XRD patterns of $Ce_{0.4}Zr_{0.6}O_2$ and $Ru/Ce_{0.4}Zr_{0.6}O_2$

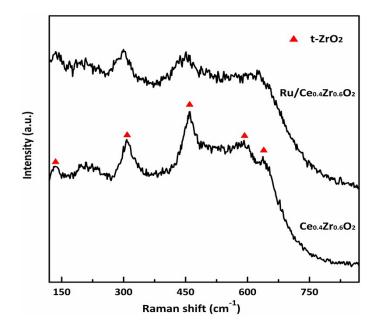


Figure S2. the Raman spectra of $Ce_{0.4}Zr_{0.6}O_2$ and $Ru/Ce_{0.4}Zr_{0.6}O_2$

Sample	Ru (wt%)	Microstrain (%)				
		(1 1 1)	(2 0 0)	(2 2 0)		
CeO ₂		0.50	0.42	0.32		
Ce _{0.8} Zr _{0.2} O ₂		2.49	1.86	1.55		
Ce _{0.6} Zr _{0.4} O ₂		2.68	2.19	1.69		
Ru/ CeO ₂	3.84	0.46	0.39	0.3		
Ru/Ce _{0.8} Zr _{0.2} O ₂	3.92	2.25	1.62	1.52		
Ru/Ce _{0.6} Zr _{0.4} O ₂	3.87	2.52	1.94	1.60		

Table S1. The microstrain of the $Ce_xZr_{1-x}O_2$ and $Ru/Ce_xZr_{1-x}O_2$

The Results of microstrain (ϵ)obtained from the Equation¹ (1):

$$\frac{\beta\cos\theta}{\lambda} = \frac{1}{D} + 4\varepsilon \frac{\sin\theta}{\lambda} \tag{1}$$

 β : full width at half maximum (FWHM), θ : the Bragg angle

D: size of coherently diffracting domains

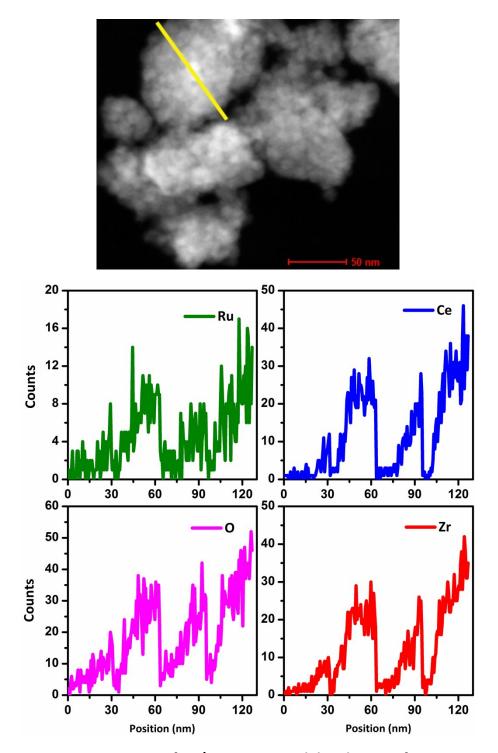


Figure S3. HAADF-STEM image of $Ru/Ce_{0.6}Zr_{0.4}O_2$ and distribution of components in randomly selected area in (a) by a line-scan EDS analysis.

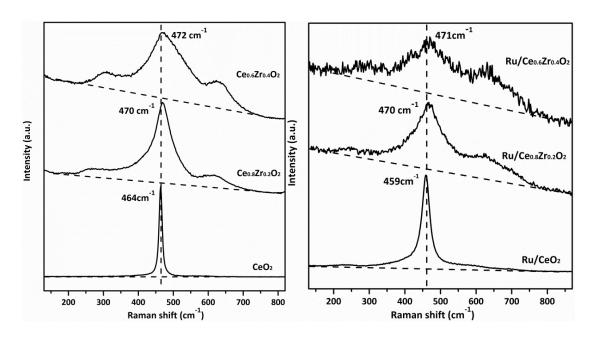


Figure S4. Raman spectra of the support $Ce_xZr_{1-x}O_2$ and the corresponding catalysts.

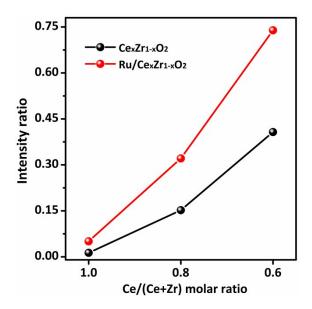


Figure S5. The I_D/I_{F2g} values of $Ce_xZr_{1\text{-}x}O_2$ and the corresponding catalysts

Figure S6. UV-vis diffuse reflectance spectra of the supports and the corresponding catalysts.

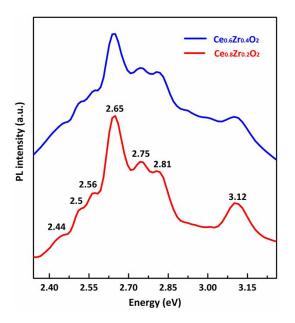


Figure S7. PL spectra of the supports and the corresponding catalysts.

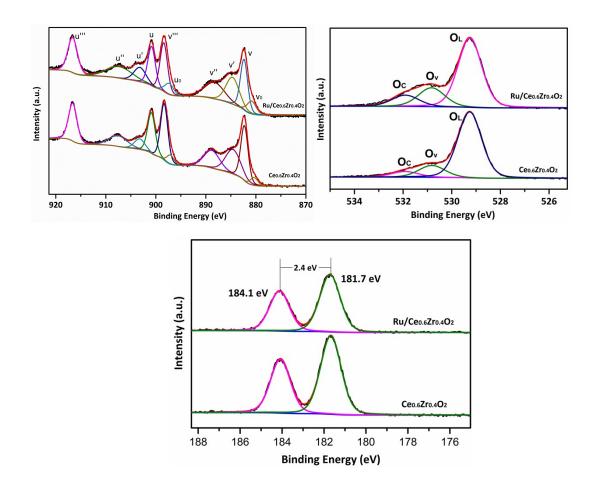


Figure S8. XPS spectra of $Ce_{0.6}Zr_{0.4}O_2$ and $Ru/Ce_{0.6}Zr_{0.4}O_2$.

The O 1s could be fitted with three peaks² at 529.3 eV (O_L), 530.8 eV (O_v) and 531.9 eV (O_c). The O_L component of the O 1s peak is attributed to lattice oxygen bound to metal cations, the Ov component at 530.8 eV is associated with O²⁻ in oxygen-deficient regions. And the Oc component is attributed to chemisorbed and dissociated oxygen species or OH. As could be observed in the Figure S8, the binding energies of Zr $3d_{5/2}$ and $3d_{3/2}$ were around 182.5 eV and 184.9 eV, which were in good agreement with previous reports³ and corresponded to Zr in 4+ oxidation state.

Sample	Ce ⁴⁺	Ce ³⁺	O _C	Ov	OL	Ru ⁰	Ru _n +	Ru _n ⁻
Ce _{0.6} Zr _{0.4} O ₂	76.0%	24.0%	7.6%	15.4%	77.0%	-	-	-
$Ru/Ce_{0.6}Zr_{0.4}O_2$	70.2%	29.8%	12.5%	20.4%	67.1%	45.6%	34.1%	20.3%

Table S2. the relative amount of different components.

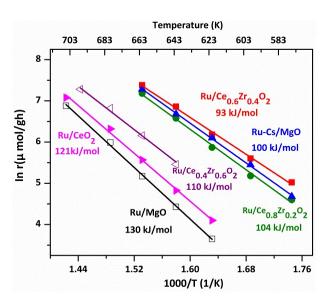


Figure S9. Apparent activation energies for ammonia synthesis over various 4 wt% Ru-loaded catalysts. Reaction conditions: catalyst, 0.2 g; $H_2/N_2=3$ with a flow rate of 60 ml/min; pressure, 1 MPa.

References

- 1. Y. Luo, A. Habrioux, L. Calvillo, G. Granozzi and N. Alonso-Vante, *ChemCatChem*, 2015, 7, 1573-1582.
- 2. J. C. Dupin, D. Gonbeau, P. Vinatier and A. Levasseur, Phys. Chem. Chem. Phys., 2000, 2, 1319-

1324.

3. B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant and J. C. Volta, J. Phys. Chem. B, 2003,

107, 11475-11484.