A novel electrochemical preparation of gold nanoparticles decorated on reduced graphene oxide-fullerene composite for highly sensitive electrochemical detection of nitrite[†]

Chellakannu Rajkumar, Balamurugan Thirumalraj, Shen-Ming Chen^{*} and Selvakumar Palanisamy^a

¹Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and

Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao

East Road, Taipei 106, Taiwan, ROC.

*E-mail: smchen78@ms15.hinet.net; Fax: +886-2-27025238; Tel: +886-2-27017147

Supporting information

Table ST1 Comparison of electroanalytical performance of RGO-C60/AuNPs modified electrode with previously reported modified electrodes for detection of nitrite.

Modified electrode	Detection method	E _{app} (V)	рН	LOD (µM)	Response range (µM)	Ref.
CRGO/GCE	Amperometry	0.8	5.0	1.0	up to 167.0	12
AuNPs/Ch/GCE	DPV	_	4.0	0.1	up to 750.0	26
Gr-PANI-AuNPs/GCE	Amperometry	0.8	5.0	0.01	up to 205.8	27
AuNPs/ZnO/MWCNTs/GCE	Amperometry	0.75	7.0	0.4	up to 400.0	28
Gr/AuNPs/GCE	Amperometry	0.89	3.0	0.016	up to 5100	29
AuNPs/CPE	Amperometry	0.8	7.0	0.093	up to 30.0	34
GR/β-CD/SPCE	Amperometry	0.81	5.0	0.26	up to 2150.0	35
AGR/SPCE	Amperometry	0.8	4.5	0.038	up to 16400.0	36
Gr/PdNPs/GCE	Amperometry	0.8	4.1	0.01564	up to 108.0	37
RGO-MWCNTs/GCE	DPV	_	7.0	25.0	up to 6060.0	38
GR/PPy/CS/GCE	Amperometry	0.9	4.0	0.1	up to 722.0	39
RGO-C60/AuNPs/GCE	Amperometry	0.807	5.0	0.013 ±	up to 1175.32	This work
				0.003		

Abbreviations;

 E_{app} – working potential, LOD – limit of detection, GRGO – chemically reduced graphene oxide, GCE – glassy carbon electrode, AuNPs –gold nanoparticles, Ch – choline, DPV – differential pulse voltammetry, Gr – graphene, PANI – polyaniline, MWCNTs – multiwalled carbon nanotubes, CPE – carbon paste electrode, GR – graphite, β -CD – β -cyclodextrin, SPCE – screen printed carbon electrode, AGR – activated graphite, PdNPs – palladium nanoparticles, RGO – reduced graphene oxide, PPy – polypyrrole, CS – chitosan

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD	
Tap water	1.0	0.984	98.4	4.6	-
	2.0	1.972	98.6	4.3	_
Drinking water _	1.0	0.989	98.9	3.6	
	2.0	1.986	99.3	3.5	
River water _	1.0	1.012	101.2	5.1	
	2.0	2.027	101.4	4.9	

Table ST2 Determination of nitrite in water samples using RGO-C60/AuNPs modified electrodeby amperometry. (The relative standard deviation (RSD) is related for n=3)