1 Electronic Supplementary Information (ESI)

2 Preparation of novel CeMo(x) hollow microspheres for low-

3 temperature SCR removal of NOx with NH3

4 Sihui Zhan*a, Qiang Shia, Yu Zhanga, Yi Li*b, Yang Tianc

7 Fig. S1 N₂ selectivity of CeMo(0.3) hollow microspheres. Reaction conditions: $[NO] = [NH_3]=500$ ppm, $[O_2] = [NH_3]=500$ ppm, $[O_2] = [NH_3]=500$ ppm, $[O_3] = [NH_3$

8 5%, balanced in N₂, GHSV = 30 000 h⁻¹.

10

11 Fig. S2 NOx conversion ratio of CeMo(0.3) hollow microspheres under different GHSVs.

13 Fig. S3 The study of thermal stability, H₂O resistance and SO₂ tolerance at 250 °C on bulk CeMo(0.3) sample.

14 Reaction conditions: $[NO] = [NH_3]=500$ ppm, $[O_2] = 5\%$, balanced in N₂, GHSV = 30 000 h⁻¹.

15

12

16

17 Fig. S4 The comparison of CeMo(0.3) hollow microspheres and WO₃-V₂O₅/TiO₂ on (a) H₂O resistance and (b)

18 SO₂ tolerance at 300°C. Reaction conditions: [NO] = [NH₃]=500 ppm, $[O_2] = 5\%$, $[H_2O] = 10$ vol% (while used),

19 $[SO_2] = 100 \text{ ppm}$ (when used), balanced in N₂, GHSV = 30 000 h⁻¹.

21

22 Fig. S5 The XRD pattern of pure hollow MoO_3 .

24 Fig. S6 Morphology and structure of CeMo(x) hollow microspheres: (a) CeO₂, (b) CeMo(0.1), (c) CeMo(0.2), (d)

25 CeMo(0.3), (e) CeMo(0.4), (f) CeMo(0.5).

28 Fig. S7 SEM images of (a) bulk CeMo(0.3), (b) bulk MoO₃ and (c) carbon templates, and (d) TEM image of

29 carbon microspheres.

27

30 It was shown in Fig. S7b that pure MoO₃ hollow microsphere cannot be obtained,

31 which may be due to the aggregation of $MoO_{3_{\circ}}$

The diameter of the hollow materials was smaller than that of carbon templates (Figure S7c and d), which was due to that the crystalline phase grew inside to occupy partial hollow space after the removal of carbon templates at about 300 °C (lower than the calcination temperature 400 °C).

37 Fig. S8 N₂ adsorption-desorption isotherm of CeMo(0.3) hollow microspheres and bulk CeMo(0.3) sample.

Fig. S9 Ce 3d XPS spectra of CeMo(0.3) hollow microspheres and bulk CeMo(0.3) sample.

41 Fig. S10 (a) NO-to-NO₂ conversion during the NO oxidation reaction; (b) NOx concentration during the NH₃

42 oxidation reaction over CeMo(x) hollow microspheres. Reaction conditions: 500 ppm of NO or NH₃, 5 vol % O₂,

43 N₂ as balance gas, total flow rate 200 mL/min, and GHSV = 30 000 h⁻¹.

Fig. S11 O 1s XPS spectra of bulk CeMo(0.3) sample.

49 Fig. S13 XPS spectra of the prepared CeMo(x) hollow microspheres.

50

Fig. S13 illustrates the Mo 3d spectra of the CeMo(x) hollow microspheres. The two binding energy peaks at 232.5 \pm 0.2 and 235.9 \pm 0.2 eV represented Mo 3d_{5/2} and Mo 3d_{3/2}.¹ The Mo 3d_{5/2} peak represents Mo⁶⁺ surface species and the Mo 3d_{3/2} peak is attributed to Mo^{(6-\delta)+} species.²

58 Fig. S15 H₂-TPR analysis of CeMo(0.3) hollow microspheres and bulk CeMo(0.3) sample.

60 Fig. S16 NH₃-TPD analysis of CeMo(x) hollow microspheres.

NH₃-TPD data can be used to evaluate the surface acidity of samples in solid-state quantitatively.³ As is well known, the coordinated NH₃ molecular bound to the Lewis acid sites is more thermally stable than the NH₄⁺ ions fixed on the Brønsted acid sites. It is reported that NH₃ desorption peaks corresponding to Lewis acid sites occur at 200 °C or higher on CeO₂-based samples,⁴ so the peaks lower than 200 °C were bound to Brønsted acid sites. Thus the amount of acid sites, shown in the form of normalized

NH₃ desorption of the sample, was calculated by integrating the peak area from NH₃TPD curves (Fig. S16), and the results were shown in Fig. 7b.

70 Fig. S17 NH₃-TPD analysis of CeMo(0.3) hollow microspheres and bulk CeMo(0.3) sample

71

72 Fig. S18 In situ DRIFTS of NH₃ adsorption on CeO₂ and CeMo(0.3) hollow microspheres at 100°C.

74 Fig. S19 In situ DRIFTS of bulk CeMo(0.3) under 500 ppm NH₃ (a) and 500 ppm NO (b) at different temperature.

75 References

- 76 1 Z.P. Zhao, M. Guo, M. Zhang, J. Hazard. Mater., 2015, 286, 402-409.
- 2 C Fountzoula, N. Spanos, H.K. Matralis, C. Kordulis, Appl. Catal. B: Environ., 2002, 35,

78 295–304.

- 79 3 H. Z Chang, X. Y. Chen, J. H. Li, L. Ma, C. Z. Wang, C. X. Liu, J. W. Schwank and Jm Hao,
- 80 Environ. Sci. Technol., 2013, 47, 5294–5301.
- 81 4 D. W. Kwon, K. B. Nam and S. C. Hong, *Appl. Catal.*, *B*, 2015, **166–167**, 37–44.