Electronic Supporting Information

Electronic Properties of Red and Black Phosphorous: the Potential Application as Photocatalysts

Kaining Ding,*,^a Lili Wen, ^a Shuping Huang, ^a Yulu Li, ^a Yongfan Zhang, ^a and

Yunpeng Lu^b

^aDepartment of Chemistry, Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350108, China

^bDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore

*To whom correspondence should be addressed. Email: dknfzu@fzu.edu.cn

S1. Computational methods

In order to determine which functional can provide the best fit to experiment, several DFTs were used to optimize the geometry structure of bulk **rP** and **bP** systems, and our calculated lattice parameters can be found in Table S1 and Table S2, respectively. Considering the interlaminar van der Waals interactions in the layered systems, several DFT-D methods were adopted, including Grimme's¹ GGA/PBE (noted as PBEgrime in Table S1) and OBS² for GGA/PW91(noted as PW91obs in Table S1) and LDA(noted as LDAobs in Table S1). Further analysis the results of lattice parameters found that with correction of van der Waals interaction, the GGA/PBE method (PBEgrime) gives the best results, comparing with the layer distances of 2D systems which corrected by van der Waals interaction are more close to the bulk **bP**. Thus, in this article, the geometry models our investigation all were optimized with GGA/PBE method.

Method	System	а	b	С	α	β
DDE	rP-Bulk	9.126	9.177	24.259	90.00	103.80
PBE	rP-MonoL	9.229	9.164	29.416	90.00	90.00
DDEarima	rP-Bulk	9.264	9.118	22.414	90.00	105.74
PDEgiline	rP-MonoL	9.257	9.121	29.396	90.00	90.00
DW/01	rP- Bulk	9.141	9.159	24.089	90.00	103.78
PW91	rP-MonoL	9.213	9.146	29.441	90.00	90.00
DU /01 1	rP-Bulk	9.091	9.066	23.119	90.00	104.87
P W 9100S	rP-MonoL	9.184	9.103	29.423	90.00	90.00
DDDE	rP-Bulk	9.305	9.270	28.492	90.00	101.045
KPDE	rP-MonoL	9.375	9.211	29.395	90.00	90.00
I D A	rP-Bulk	8.889	8.794	21.576	90.00	105.904
LDA	rP-MonoL	9.049	9.012	29.406	90.00	90.00
I D A obs	rP-Bulk	8.830	8.702	20.997	90.00	106.380
LDA008	rP-MonoL	9.105	9.110	29.145	90.00	90.00
Exp ^[a]	rP-Bulk	9.270	9.170	22.610	90.00	106.18

Table S1 The lattice parameters based on different methods for the Hittorf's rP

[a] Ref. 35

	<i>a</i> (Å)	b(Å)	$c(\text{\AA})$	α(°)	β(°)
PBE	3.331	11.175	4.521	90.00	90.00
PBEgrime	3.317	10.368	4.406	90.00	90.00
PW91	3.333	11.078	4.520	90.00	90.00
PW91obs	3.345	11.794	4.673	90.00	90.00
LDA	3.308	10.287	3.643	90.00	90.00
LDAobs	3.292	10.158	4.381	90.00	90.00
Exp ^[a]	3.314	10.478	4.376	90.00	90.00

 Table S2 The lattice parameters based on different methods for bP in the bulk form.

[a] Ref. 46

Figure S1. Schematic diagram of the layer distance of bP.

Table S3. Th	le layer	distance ((\mathbf{D})) of bP	with and	without	van der	Waals	correction.
--------------	----------	------------	----------------	----------------	----------	---------	---------	-------	-------------

	bP -Bulk		bP-	TriL	bP- BiL		
	d_1	d ₂	d ₁	d ₂	d_1	d ₂	
D _(DFT) ^[a]	5.179	5.179	5.500	5.382	5.432	-	
D _(DFT-D) ^[b]	5.180	8.150	5.235	5.240	5.179	-	

^[a] optimize without van der Waals correction. ^[b] optimize with van der Waals correction.

In order to examine the structural stability of monolayer **rP**, the dynamics simulations in the CASTEP code were performed using a time step of 1 fs and total simulation time of 10 ps with the temperature controlled at 300 K. Snapshots for the monolayer **rP** and the numbered key band lengths are presented in Figure S2. As shown in Figure S3, the key bond lengths of monolayer **rP**, which obtained by extracting every other 200 steps during the dynamics simulations, tend to a stable value after 7000 steps. That is to say, the P-P bonds are stable in monolayer **rP** during

the dynamics simulations, indicating that monolayer \mathbf{rP} is stable thermodynamically.

Figure S2. The snapshots for the monolayer rP.

Figure S3. the distribution of key bond length of monolayer rP, which obtained by extracting every other 200 steps during the dynamics simulations.

In order to decide which is the most appropriate method to describe the electronic structure of the **rP** systems, several DFT calculations were performed to calculate the band gap of those systems and the band gaps from different calculations are listed in Table S3. The results show that GGA/PBE (1.25 eV) and LDA/CAPZ (1.15 eV) have obviously underestimated the band gap compared with the experimental value of 1.8 eV³ due to the well-known shortcoming in these two functionals. While the band gap produced from HSE03 and PBE0 is 0.22 and 0.79 eV larger than the experimental value, respectively. Finally, the results calculated by HSE06 are quite comparable to the experimental reports³.

So far, various approaches (including the tight-bonding method⁴, self-consistent pseudopotential method⁵ and local-orbital method⁶) has been performed to determine the electronic structure of black phosphorus with different results. In our DFT calculations, GGA, LDA and hybridization functional were adopted to determine the electronic properties of the bulk **bP**. Table S3 lists the calculated band gap using different methods. As usual, PBE and LDA calculations underestimate the electronic band gap, as the results from these two functionals are smaller than those determined by HSE03, HSE06 and PBE0. Herein, we have obtained 0.40 eV band gap for the bulk **bP** using HSE06 hybrid functional, while HSE03 and PBE0 give an overestimated band gap 0.76 and 0.90 eV, respectively. The previous HSE06 computational result reported by Qiao⁷ is 0.36 eV, and the experimentally measured value is 0.31-0.36 eV⁸⁻¹⁰. So we considered the HSE06 is a reliable method to examine the electronic properties of **bP**. Hence, in this article, we will display only the electronic and optical properties of systems our investigation calculated by HSE06 functional.

	rP-Bulk	rP- MonoL	bP -Bulk	bP- TriL	bP- BiL	bP- MonoL
PBE	1.25	1.68	0.10	0.44	0.37	0.80
LDA	1.15	1.43	0.10	0.42	0.33	0.74
HSE03	2.02	2.44	0.77	0.73	1.12	1.61
HSE06	1.99	2.39	0.40	0.74	1.08	1.67
PBE0	2.59	3.11	0.90	1.36	1.69	2.24
Exp	$1.7^{[a]}$	-	0.31-0.36 ^[b]	-	-	1.45 ^[c]
Other theory	1.8 ^[d]	-	0.36 ^[e]	0.78 ^[e]	1.05 ^[e]	1.4-1.6 ^[e]

=

Table S4 The band gap of **rP** and **bP** calculated with different methods.

[a] Ref. S3. [b] Ref. S8. [c] Ref. 18. [d] Ref. S3. [e] Ref. 19.

S2. Geometry Structure of bulk rP

Title	b	ulk rP after	geometry o	ptimization u	sing GGA	A-PBE me	thod in	corporating
	Gri	mme correcti	on.					
Lattice ty	pe	Р						
Space gro	up name	P 2/c						
Space gro	up numbe	r 13						
Setting nu	ımber	1						
Lattice pa	rameters							
а	b	c	alpha	beta	gamı	na		
9.06420	9.0181	0 22.4140	90.0000) 105.7380	90.0	000		
Unit-cell	volume =	1763.478133	?^3					
Structure	parameter	S						
		X	у	Z	Occ.	U	Site	Sym.
1 P	P1	0.30399	0.20076	0.18098	1.000	1.000	4g	1
2 P	P2	0.17717	0.03174	0.11625	1.000	1.000	4g	1
3 P	P3	0.05155	-0.05503	0.17960	1.000	1.000	4g	1
4 P	P4	-0.07098	-0.22174	0.11464	1.000	1.000	4g	1
5 P	P5	-0.20261	-0.32320	0.17236	1.000	1.000	4g	1
6 P	P6	-0.31481	-0.48613	0.10179	1.000	1.000	4g	1
7 P	P7	-0.43311	-0.55363	0.17080	1.000	1.000	4g	1
8 P	P8	-0.57147	-0.72741	0.11519	1.000	1.000	4g	1
9 P	P9	0.04108	0.39383	0.07193	1.000	1.000	4g	1

10 P	P10	-0.00218	0.16032	0.04474	1.000	1.000	4g	1
11 P	P11	-0.21394	0.13949	0.07391	1.000	1.000	4g	1
12 P	P12	-0.25046	-0.09006	0.04318	1.000	1.000	4g	1
13 P	P13	-0.46344	-0.12419	0.06885	1.000	1.000	4g	1
14 P	P14	-0.49309	-0.35057	0.03177	1.000	1.000	4g	1
15 P	P15	-0.69806	-0.36405	0.06556	1.000	1.000	4g	1
16 P	P16	-0.74882	-0.59757	0.04204	1.000	1.000	4g	1
17 P	P17	0.14788	0.39234	0.17225	1.000	1.000	4g	1
18 P	P18	-0.14160	0.10039	0.17451	1.000	1.000	4g	1
19 P	P19	-0.40282	-0.17188	0.16971	1.000	1.000	4g	1
20 P	P20	-0.58770	-0.35533	0.16744	1.000	1.000	4g	1
21 P	P21	-0.05479	0.32512	0.20086	1.000	1.000	4g	1

Number of polygons and unique vertices on isosurface = 0(0) 84 atoms, 0 bonds, 0 polyhedra; CPU time = 65 ms

S3. Geometry Structure of bulk bP

Title

bulk **rP** after geometry optimization using GGA-PBE method incorporating Grimme correction.

Lattice typeCSpace group nameCmcaSpace group number64Setting number1

Lattice parameters

a b c alpha beta gamma 3.34110 10.35620 4.36020 90.0000 90.0000 90.0000

Unit-cell volume = 150.867715 ?^3

Structure parameters

		Х	у	Z	Occ.	U	Site	Sym.
1 P	P1	0.00000	0.10198	0.08302	1.000	0.010	8f	m

Number of polygons and unique vertices on isosurface = 0 (0) 12 atoms, 0 bonds, 0 polyhedra; CPU time = 13 ms

S4. Electronic Structure of rP

Figure S4: The partial density of states for **rP** in bulk form, and 8, 9, 10, and 18 are the numbered atoms on the tube being consistent with that in Figure 1.

Figure S5: The partial density of states for **rP** monolayer, 8, 9, 10, and 18 are the numbered atoms on the tube being consistent with that in Figure 1.

S5. Effective Mass of rP

Table S4 The effective mass of electrons (m_e^*) and holes (m_h^*) in the unit of freeelectron mass for rP in bilayer and thilayer systems along different directions in the reciprocal space.

	System	Г-Х	Γ-Υ	Ζ-Γ
m_e^*	rP-ThiL	0.587	0.569	-
	rP-BiL	0.625	0.612	-
m_h^*	rP-ThiL	1.070	1.800	-
	rP-BiL	1.442	1.495	-
D	rP-ThiL	0.549	0.316	-
	rP-BiL	0.433	0.409	-

S6. optical property of bP

Figure S6: The detail with enlarged scale absorption spectra of **bP** in bulk at 500 - 700 nm being consistent with that in Figure 13a and 13b: (a) for direction-averaged; (b) for light incident polarized along the (100), (010), and (001) directions.

Figure S7. The calculated imaginary parts of dielectric function of the bulk (a), trilayer (b), bilayer (c), monolayer (d) **bP**. The inset shows a detail with enlarged scale in the photon energy range from 1.55 to 2.25 eV.

References

- S. Grimme, J. Comput Chem., 2006, 27, 1787-1799.
- 2 F. Ortmann, F. Bechstedt, W. G. Schmidt, *Phys. Rev. B*, 2006, **73**, 205101.
- ³ F. Wang, W. K. H. Ng, J. C. Yu, H. J. Zhu, C. H. Li, L. Zhang, Z. F. Liu, Q. Li, *Appl. Catal. B: Environ.*, 2012, **111-112**, 409-414.
- 4 Y. Takao, H. Asahina, A. Morita, *J Phys Soc Jpn*, 1981, **50**, 3362-3369.
- 5 H. Asahina, A. Morita, J. Phys. C: Solid State Phys., 1984, 17, 1839.
- 6 Y. Akahama, S. Endo, S. I. Narita, J Phys Soc Jpn, 1983, 52, 2148-2155
- 7 J. Qiao, X. Kong, Z. X. Hu, F. Yang, W. Ji, Nat Commun, 2014, 5, 1-7.
- 8 R. Keyes, *Phys. Rev.*, 1953, **92**, 580-584.
- 9 D. Warschauer, *J Appl Phys*, 1963, **34**, 1853-1860.
- 10 Y. Maruyama, S. Suzuki, K. Kobayashi, S. Tanuma, *Physica B+C*, 1981, **105**, 99-102.