Electronic Supplementary Material

Design of fluorescence aptaswitch based on the aptamer modulated nano-

surface impact on the fluorescence particles

Atul Sharma ^{a, b}, Akhtar Hayat ^{c, a}, Rupesh Kumar Mishra ^{a, d}, Gaëlle Catanante ^a,

Shakir Ahmad Shahid ^e, Sunil Bhand ^a, Jean Louis Marty ^{a, *}

^a BAE Laboratoire, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan 13 Cedex, France.

^b Biosensor Lab, Department of Chemistry, BITS, Pilani- K. K. Birla Goa Campus, Zuarinagar 403726, 16 Goa, India.

^c Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of 18 Information Technology (CIIT), Lahore 54000, Pakistan.

^d Department of Biosciences and Biotechnology, Banasthali University, Rajasthan, 304022, India.

^e Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan

*Corresponding Author:

Jean Louis MARTY

Laboratoire BAE

Université de Perpignan Via Domitia

Bâtiment S, 52 avenue Paul Alduy

66860 Perpignan cedex – France

Ph: +33 (0) 4 68 66 22 54, Fax: +33 (0) 4 68 66 22 23

Email: jlmarty@univ-perp.fr

Supplementary Table 1: UV characterization of aptamer-TiO₂ complex in HBB, pH 7.4

Description	Absorbance
Aptamer (250 nM)	0.285
Aptamer + TiO ₂ (25 μ g/mL)	0.364
Aptamer + TiO ₂ (300 μ g/mL)	1.299

Supplementary Figure S1:

Fig. S1: Effect of pH on quenching efficiency of aptamer-TiO₂ complex at optimized concentration (n=3).

Supplementary Figure S2:

Fig. S2: Effect of NaCl concentration on quenching efficiency of aptamer-TiO₂ complex at optimized concentration (n=3).

Supplementary Figure S3:

Fig. S3: Effect of MgCl₂ concentration on quenching efficiency of aptamer-TiO₂ complex at optimized concentration (n=3).

Supplementary Figure S4:

Fig. S4: Effect of incubation time on quenching efficiency of TiO_2 in HBB, pH 7.4 (n=3).

Supplementary Figure S5:

Fig. S5: Effect of incubation time on quenching efficiency of aptamer-TiO₂ complex in HBB,

pH 7.4 (n=3).

Supplementary Table 2: Specificity performance of developed aptamer assay sensing platform against OTB

Specificity performance of fluorescence aptamer assay against other analogue														
Conc.	ОТА		ОТВ	8	% response	Warfarin		% response of	NAP		%			
[µM]	Recovered FL intensity		Recovered FL	l intensity	of OTB	Recovered FL intensity		ОТВ	Recovered FL intensity		response of			
	(a.u.)		(a.u.))	(F _{OTB} / F _{OTA}	(a.u.)		(F _{warfarin} / F _{OTA}	(a.u.)		ОТВ			
	Mean ± S.D.	% R.S.D.	Mean ± S.D.	% R.S.D.	x 100)	Mean ± S.D.	% R.S.D.	x 100)	Mean ± S.D.	% R.S.D.	(F _{NAP} / F _{OTA}			
	(n=3)		(n=3)			(n=3)			(n=3)		x 100)			
0.25	13.93 ± 1.19	8.54	1.27 ± 0.10	9.00	9.12	0.08 ± 0.01	12.5	0.57	0.06 ± 0.01	16.67	0.43			
1	49.96 ± 1.94	5.88	4.36 ± 0.31	7.11	8.72	0.74 ± 0.06	8.11	1.48	0.53 ± 0.03	5.66	1.06			
5	206.9 ± 9.60	4.64	11.44 ± 1.06	9.26	5.53	1.05 ± 0.09	8.57	0.51	0.89 ± 0.06	6.74	0.43			