Supporting Information

Single Exited State Intramolecular Proton Transfer (ESIPT) containing Rhodol based

chemodosimeter for both Hg²⁺ and OCI⁻: ratiometric detection with live-cell imaging

Abhishek Manna^a, Debasish Sarkar^b, Shyamaprosad Goswami^a Ching Kheng Quah^c and Hoong-Kun Fun^{c,d}

^a Department of Chemistry, Indian Institute of Engineering Science and Technology (Formerly

Bengal Engineering & Science University), Shibpur, West Bengal, India.

^b Department of Life science and Biotechnology, Jadavpur University, Kolkata.

^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM,

Penang, Malaysia. ^d Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud

University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

CONTENTS

1.	Detection of Quantum yield	2
2.	Calculation of the detection limit	2
3.	Single crystal X-ray structure	3
4.	¹ H-NMR, ¹³ C-NMR and Mass spectra	5
5.	References	9

1. Determination of fluorescence quantum yield:

Here, the quantum yield φ was measured by using the following equation,

$$\varphi_{\rm x} = \varphi_{\rm s} (F_{\rm x} / F_{\rm s}) (A_{\rm s} / A_{\rm x}) (n_{\rm x}^2 / n_{\rm s}^2)$$

Where, X & S indicate the unknown and standard solution respectively, $\varphi =$ quantum yield,

F = area under the emission curve, A = absorbance at the excitation wave length,

n = index of refraction of the solvent. Here φ measurements were performed using rhodamine in ethanol as standard [$\varphi = 0.96$] (error ~ 10%). [Grabolle et al. 2009, Karstens et al. 1980, Arden et al. 1991]

The quantum yield of **STBR** itself is 0.02 which change into 0.55 with the addition of Hg^{2+} and 0.73 with the addition of hypochlorite.

2. Calculation of the detection limit:

Figure S1: Fl. Intensity Vs. conc. of OCl⁻ and Hg²⁺ at 595 nm and 590 nm respectively.

The detection limit DL of **STBR** for Hg²⁺ and OCl⁻ was determined from the following equation [Zhu et al. 2008]:

DL = K* Sb1/S

Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation; S is the slope of the calibration curve.

From the graph we get slope = 4E + 11 for Hg²⁺ and 1E+12 for OCl⁻, and Sb1 value is 82954.67249 for Hg²⁺ and 111416.0156 for OCl⁻.

Thus using the formula we get the Detection Limit = 0.41 μ M for Hg²⁺ and 0.22 μ M for OCl⁻ i.e. STBR can detect Hg²⁺ and OCl⁻ in this ppm level.

3. Single crystal X-ray structure:

Figure S2: The molecular structure of ESIPT containing rhodol moiety, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The intramolecular hydrogen bond is shown as dashed line (left) and the crystal packing of ESIPT containing rhodol moiety, viewed along the *a*-axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity (right)

Table S1:Experimental details

Crystal data CCDC 1420361					
Chemical formula	$C_{31}H_{24}N_2O_4S$				
$M_{ m r}$	520.58				
Crystal system, space group	Triclinic, $P\bar{i}$				
Temperature (K)	100				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.742 (4), 11.180 (5), 15.075 (7)				
α, β, γ (°)	73.813 (11), 85.765 (12), 80.157 (10)				
$V(Å^3)$	1234.1 (10)				
Ζ	2				
Radiation type	Μο Κα				
$\mu (mm^{-1})$	0.17				
Crystal size (mm)	$0.22\times0.19\times0.05$				
Data collection					

Diffractometer	Bruker SMART APEX II DUO CCD area-detector diffractometer				
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)				
T_{\min}, T_{\max}	0.962, 0.991				
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20730, 4965, 3123				
R _{int}	0.076				
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.623				
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.132, 1.03				
No. of reflections	4965				
No. of parameters	349				
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement				
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.30, -0.28				

Table 5B.2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H1 <i>O</i> 2…N2	0.90 (3)	1.81 (3)	2.629 (3)	150 (3)
C23—H23 A ···O2 ⁱ	0.95	2.41	3.321 (4)	160

Symmetry code: (i) -x+1, -y, -z.

4. ¹H NMR, ¹³C NMR and ESI MS spectra:

¹H NMR spectrum of Receptor i.e. STBR and its expansion:

¹³C NMR spectrum (with DEPT 90 and DEPT 135) of Receptor i.e. STBR:

ESI MS spectra of Receptor i.e. STBR:

ESI MS spectra of Receptor i.e. STBR in presence of HgCl₂:

¹H NMR spectrum of Receptor i.e. STBR + OCl⁻ (as NaOCl Solution) in *d*₆-DMSO:

¹H NMR spectrum of Receptor i.e. STBR + Hg²⁺ (as HgCl₂) in *d*₆-DMSO:

¹H-NMR spectra of Receptor i.e. STBR in presence of NaOCl in *d*₆-DMSO:

4. References:

- H. Wen, Q. Huang, X.-F. Yang, H. Li, Chem. Commun., 2013, 49, 4956.
- M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychm"uller, U. Resch-Genger, Anal. Chem. 2009, 81, 6285,
- T. Karstens, K. Kobs, J. Phys. Chem. 1980, 84, 1871.
- J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, K.H.J. Drexhage, J. Lum. 1991, 48-49, 352.
- M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, Org. Lett., 2008, 10, 1481.