Supporting Information

Substrate-Dependent Resistance Decrease of Graphene by Ultraviolet-

Ozone Charge Doping

Lihui Liu,^{1,*} Zhejian Cao,¹ Wei Wang,¹ Ergang Wang,² Yu Cao³ and Zhaoyao Zhan¹

¹ Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg

41296, Sweden

² Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden

³ Department of Materials and Manufacturing Technology, Chalmers University of Technology,

Göteborg 41296, Sweden

*Correspondence email address: lihui@chalmers.se

1	Substrates	UV light			Resistance [Ω/□] after UVO exposure					Work
		Wavelength [nm]	Intensity [mW/cm ²]	Ozone	0 min	3 min	5 min	10 min	>10 min	function [eV]
1 ^[1]	-	-	-	Yes	Metal to insulator					-
2 [2]	Si/SiO ₂	254	20	Yes	464	5354	∞	~	~	-
3 [3]	Si/SiO ₂	254	-	Yes	2000	-	-	3000	9000	-
4 [4]	Si/SiO ₂	254	-	Yes	90ª	110ª	-	-	-	-
5[5]	Si/SiO ₂	-	-	Yes	350	-	-	400	420	4.9 to 4.83
6[6]	Si/SiO ₂	254	-	Yes	3800	-	-	1000	800	-
7 [7]	Glass/ITO	-	30	Yes	1000	1500	3000	∞	∞	4.3 to 4.85
8 [8]	Si/SiO ₂	220	11	No	~9000 -					-
9 ^[9]	Si/SiO ₂	365	-	No	_b					-
10 [10]	Ga/N	325	50 E-10⁵	No	4 E-6 to 2 E-4 ° -					-

Table S1. Summarized literature results of the effect of UVO treatment on the resistance of graphene.

^{a)} Unit in Ω/\Box ; ^{b)} $\mu_{hole} = \sim 1200 \text{ cm}^2/\text{V} \cdot \text{s}$, $\mu_{electron} = \sim 760 \text{ cm}^2/\text{V} \cdot \text{s}$; ^{c)} the current value in A.

Figure S1 Direct transfer of multilayer graphene on PTFE and paraffin film by the imprint and electrochemical bubbling delamiantion methods.

Figure S2 AFM images and roughness values for graphene on different substrates. Figure b is the surface profile of graphene on Si/SiO_2 , the thickness of the one-time transferred graphene is 0.769 nm.

Figure S3 Schematic of the graphene device for the resistance test on different substrates. The distance between the two Au electrodes is 2 mm and the width of graphene is 1 mm.

Figure S4 Resistance change of graphene on different substrates using UVO treatment. (a) Monolayer graphene transferred to Si/SiO₂ substrate. (b) Monolayer graphene on F8BT film. (c) Monolayer graphene transferred to GaN substrate. (d) Monolayer graphene transferred to PET substrate. (e) Monolayer graphene on PMMA/PET substrate. (f) Multilayer (two layers) graphene on a paraffin film. (g) Monolayer graphene transferred to glass substrate. (g) Multilayer (three layers) graphene on a PTFE film.

Figure S5 Water contact angles for graphene films (a) and (b) on PET substrate before and after UVO treatment; (c) and (d) on glass substrate before and after UVO treatment; (e) and (f) on Si/SiO2 substrate before and after UVO treatment.

References

- [1] N. Leconte, J. Moser, P. Ordejon, H. H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C. M. S.
- Torres, J. C. Charlier, S. Roche, *ACS Nano* **2010**, 4, 4033.
- [2] F. GÜNeŞ, G. H. Han, H.-J. Shin, S. Y. Lee, M. Jin, D. L. Duong, S. J. Chae, E. S. Kim, F. E. I.
- Yao, A. Benayad, J.-Y. Choi, Y. H. Lee, Nano 2011, 06, 409.
- [3] S. Zhao, S. P. Surwade, Z. Li, H. Liu, *Nanotechnology* **2012**, 23, 355703.
- [4] Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, S. Koh, *Appl. Phys. Lett.* **2013**, 103, 063107.
- [5] Y.-J. Lin, J.-J. Zeng, Appl. Phys. Lett. 2013, 102, 183120.
- [6] M. Hofmann, Y. P. Hsieh, K. W. Chang, H. G. Tsai, T. T. Chen, *Sci Rep* 2015, 5, 17393.
- [7] K. C. Kwon, W. J. Dong, G. H. Jung, J. Ham, J.-L. Lee, S. Y. Kim, *Sol. Energy Mat. Sol. C.* **2013**, 109, 148.
- [8] M. Z. Iqbal, S. Siddique, M. W. Iqbal, J. Eom, J. Mater. Chem. C 2013, 1, 3078.
- [9] Z. Luo, N. J. Pinto, Y. Davila, A. T. Charlie Johnson, *Appl. Phys. Lett.* **2012**, 100, 253108.
- [10] F. Lin, S.-W. Chen, J. Meng, G. Tse, X.-W. Fu, F.-J. Xu, B. Shen, Z.-M. Liao, D.-P. Yu, *Appl.*

Phys. Lett. **2014**, 105, 073103.