Supporting Information

Interfacial Synthesis of Magnetic PMMA@Fe₃O₄/ Cu₃(BTC)₂ Hollow Microspheres through One-Pot Pickering Emulsion and Their

Application as Drug Delivery

Xiaomin Zhu, a Shenping Zhang, a Lihuo Zhang, a Honglai Liu a and Jun Hu* a

^aKey Laboratory for Advanced Materials, East China University of Science and Technology, 130

Meilong Road, Shanghai 200237, China. E-mail: junhu@ecust.edu.cn; Fax: 86-21-64252195; Tel:

86-21-64252195

Figure S1 Optical micrographs of Pickering emulsion stabilized by Fe₃O₄ nanoparticles (a) No precursors of Cu₃(BTC)₂; (b) Containing precursors of Cu₃(BTC)₂

Figure S2 (a): PXRD patterns Fe₃O₄ NPs, Cu₃(BTC)₂ and the powder of the magnetic hollow Fe₃O₄/Cu₃(BTC)₂ composite.(b): FTIR spectra of PMMA, Cu₃(BTC)₂ and magnetic hollow PMMA@Fe₃O₄/Cu₃(BTC)₂ hybrid microspheres

Figure S3 OM images of (a) dried magnetic hollow $Fe_3O_4/Cu_3(BTC)_2$ composite microspheres (b) non-spheres of PMMA@Fe_3O_4 hybrids

Figure S4 TGA curves of the Fe₃O₄ NPs, Cu₃(BTC)₂, PMMA and hollow PMMA@Fe₃O₄ /Cu₃(BTC)₂ hybrid microspheres.

Figure S5 (a) The changes of drug loading performance with the time at 50 °C. (b) The changes of drug loading performance with the temperature for 12 h.

Sample	Loading capacity	Release time
Microporous Silica ^[1]	150-200 mg/g	1-7 h
Mesoporous Carbons ^[2]	200-240 mg/g	0.8-5 h
SBA-15 ^[3]	210 mg/g	4-7 h
Natural Halloysite Nanotubes ^[4]	120-170 mg/g	
MIL-53 ^[5]	280 mg/g	
This Work	250 mg/g	7-15 h

Table S1 The loading capacity and release time of different materials for ibuprofen

Reference

[1] T. Numpilai, S. Muenmee and T. Witoon, Mat Sci Eng C-Mater, 2016, 59, 43-52.

[2] X.F. Wang, P. Liu, Y. Tian, Microporous Mesoporous Mater, 2011, 142, 334-340.

[3] F. Rehman, P. L.O. Volpe, C. Airoldi, Colloids Surf B Biointerfaces, 2014, 119, 82-89.

- [4] D. Y. Tan, P. Yuan, F. A. Bergaya, H. guang, D. Liu, H. M. Liu and H. P. He, *Microporous Mesoporous Mater*, 2013, 179, 89–98.
- [5] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y. K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur and R. Gref, *Nat. Mater*, 2010, 9, 172.