Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from

Propargylic Ketones and TMSN₃

Yan He, ⁺a Yu-yang Xie, ⁺a Ying-chun Wang, ^{ab} Xiao-min Bin, ^a Da-chao Hu, ^a Heng-Shan Wang^{*}a and Ying-Ming Pan^{*}a

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China. E-mail: whengshan@163.com, panym2013@hotmail.com
^b College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China

S1	General remarks
S2	General preparation of propargylic ketones substrates
S4	Labeling experiments
S7	ESI/MS experiments
S8	¹ H NMR and ¹³ C NMR spectra of products

*Correspondence authors

Phone: (+86)-773-5846279; fax: (+86)-773-5803930;

E-mail: whengshan@163.com; panym2013@hotmail.com

General remarks

Melting points were measured with a SGW X-4 melting point instrument (uncorrected). Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹C NMR) were recorded at 400 MHz and 100 MHz, respectively, using CDCl₃ as reference standard (δ 7.26 ppm) for ¹H NMR and (δ 77 ppm) for ¹³C NMR. HRMS (ion trap) were recorded using ESI. Precoated silica gel plates GF-254 were used for thin-layer analytical chromatography. Column chromatography was performed on silica gel (300-400 mesh). Starting materials azidomethyl aromatics were readily prepared according to literature procedures. Unless otherwise noted, all reagents were obtained commercially and used without further purification.

General preparation of propargylic ketones substrates

The following synthesis procedure is the general procedure used to prepare all substrates.

Under an Ar atmosphere, to a solution of trimethylsilylacetylene (1.5 mL, 10.00 mmol) in THF (20.0 mL) were added dropwise *n*-BuLi (9.38 mL, 1.6 M in hexane) at -78 °C, and the mixture was stirred for 30 min at the same temperature. To the above reaction mixture was added benzaldehyde (1.02 ml, 10.00 mmol) at -78 °C, and the mixture was stirred with slowly warming to room temperature. After stirring for 2 h at the same temperature, the reaction was quenched with sat. NH₄Cl aq., and the mixture was extracted with CH₂Cl₂, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting oil was purified by column chromatography on silica gel (CH₂Cl₂: hexane = 4:1) to afford 1-phenyl-3-trimethylsilanylprop-2-yn-1-ol (**S1a**) (2.01 g, 9.82 mmol) as colorless oil.

To a solution of **S1a** (2.01 g, 9.82 mmol) in MeOH (20.0 mL) were added K_2CO_3 (1.38 g, 10.00 mmol) at room temperature, and the mixture was stirred for 2 h at the same temperature, and monitored periodically by TLC. Upon completion, the reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄ and filtered. The solvent was removed under vacuum. The crude residue was purified by flash silica gel column chromatography (ethyl acetate/petroleum ether = 1:20 to 1:10) to afford propargyl alcohols **S2a** (1.30 g, 9.8mmol).

The crude alcohol was dissolved in dichloromethane and treated with MnO_2 (15 equiv.). After stirring at room temperature for 2h, the reaction was complete as

determined by TLC. Excess MnO_2 was removed by filtration of the reaction mixture through a pad of celite. The filtrate was washed sequentially with water and brine and dried over MgSO₄. The solvent was removed under reduced pressure to afford a yellow residue that was purified by flash column chromatography. The crude residue was purified by flash silica gel column chromatography (ethyl acetate/petroleum ether = 1:20 to 1:10) to afford propargylic ketones **1a** (1.04 g, 8.00mmol).

Propargylic ketones (1a) ¹H NMR (400 MHz, CD₃CN): δ 8.15–8.09 (m, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 3.02 (s, 1H).

Labeling experiments:

Reaction conditions: **1a** (0.3 mmol), TMSN₃ (0.45 mmol), TEMPO (15 mol%) in $CH_3^{18}OH$ (2 mL) under argon atmosphere at room temperature. PPh₃ (1.0 equiv.) was added after 12 h and the mixture was stirred for another 1 h. The ¹⁸O-2a was determined by HRMS.

Reaction conditions: **1a** (0.3 mmol), TMSN₃ (0.45 mmol), TEMPO (15 mol%) in CH₃OH (2 mL) under ${}^{18}O_2$ atmosphere at room temperature. PPh₃ (1.0 equiv.) was added after 12 h and the mixture was stirred for another 1 h. The ${}^{18}O-2a$ was determined by HRMS.

HRMS analysis of 2a

Reaction conditions: **1a** (0.3 mmol), TMSN₃ (0.45 mmol), TEMPO (15 mol%) in CH₃OD (2 mL) under ¹⁸O2 atmosphere at room temperature. PPh₃ (1.0 equiv.) was added after 12 h and the mixture was stirred for another 1 h. The **2a**-*d* was determined by ¹H NMR.

Reaction conditions: **1a**-d' (0.3 mmol), TMSN₃ (0.45 mmol), TEMPO (15 mol%) in CH₃OH (2 mL) under air atmosphere at room temperature. PPh₃ (1.0 equiv.) was added after 12 h and the mixture was stirred for another 1 h. The **2a**-d' was determined by ¹H NMR.

Spectral data of 2a-d and 2a-d`

2a-d ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.83–7.76 (m, 2H), 7.51–7.41 (m, 3H) ppm.

2a-d¹H NMR (400 MHz, CDCl3) δ 7.81 (dd, J = 7.9, 1.6 Hz, 2H), 7.47 (d, J = 7.7 Hz, 3H), 6.53 (s, 1H)

ESI/MS experiments:

1 (0.3 mmol), TMSN₃ (0.45 mmol), TEMPO (15 mol%) in CH3OH (2 mL) under air at room temperature. PPh₃ (1.0 equiv.) was added after 12 h and the mixture was stirred for another 1 h and 50 μ L of the mixture was used for the ESI analysis in CH₃OH.

¹H NMR and ¹³C NMR spectra for products

S23

