Three dimensional iron oxide/graphene aerogel hybrids as all-

solid-state flexible supercapacitor electrodes

Abdul Muqsit Khattak, Huajie Yin, Zahid Ali Ghazi, Bin Liang, Azhar Iqbal, Niaz Ali, Yan Gao, Lianshan Li,* Zhiyong Tang*

Additional figures

Figure S1. (a-b) SEM images of the Fe_2O_3/G .

Figure S2. EDS spectra of the Fe_2O_3/GA composite.

Figure S3. High-resolution core level 1s spectrum of O

Figure S4. CV curves of the Fe₂O₃/GA SC at different scan rates

Figure S5. Stability representing CV curves of the Fe_2O_3/GA Flat SC device at 100 mV/s

Figure S6. CV curves of the Fe₂O₃/GA 90° bent SC device at 20 mV/s

Figure S7. Capacitance retention of Fe $_2O_3/GA$ Flat and Bent SC devices over 2200 cycles at 3 A/g

Figure S8. Nyquist plots of Fe₂O₃/GA 90° bent SC device

Material	Highest Specific capacitance F/g	Current density (A/g)	cycle life (F/g)	referen ce
Fe ₃ O ₄ /rGO	216.7 F/g	0.5 A	195.1F/g (73.2% capacity retention) after 3000charge/ discharge cycles at 0.5 A	1
GS/Fe ₃ O ₄	368 F/g	0.5 A	245 F/g (108% capacity retention) after 1000 charge/ discharge cycles at 5 A	2
α-Fe ₂ O ₃ mesocrystals/graphene	306.9 F/g	3 A	196.7F/g (100% capacity retention) after 2000 charge/ discharge cycles at 5A	3
Porous α-Fe ₂ O ₃ /graphene	343.7 F/g	3 A	174.5 F/g (95.8% capacity retention) after 50000 charge /discharge cycles at 10 A	4
a-Fe ₂ O ₃ /carbon nanotube sponges	296.3 F/g	5 mV/s	85 F/g (80% capacity retention) after 1000 charge /discharge cycles at 100 mV/s	5
hybrid Fe ₃ O ₄ @FLG/PEDOT:PSS multilayers	153 F/g	0.1 A	46 F/g (114% capacity retention) after 3500 cycles charge/discharge cycles at 1 A	6
3D-KSPC/Fe ₃ O ₄ -DCN	285.4 F/g	1A	220.5 F/g (104% capacity retention) after 5000 charge /discharge cycles at 2 A	7

Table S1. Electrochemical properties of various Fe_2O_3 , Fe_3O_4 and graphene based composite materials.

3D graphene/ Fe ₃ O ₄ architectures (GFAs)	211.4 F/g	1A	126.6 F/g (90.5% capacity retention) at 20 A after 2000 charge/discharge cycles.	8
Fe ₂ O ₃ /GA composite	81.3 F/g	1A	62.7 F/g at 10 A	9
RGO-Fe ₃ O ₄	236 F/g	1A	229 F/g (90.5% capacity retention) at 1 A after 500 charge/discharge cycles	10
AC/FeO composites	167.6 F/g	2A	158 F/g (94% capacity retention) at 2 A g^{-1} after 2000 charge/ discharge cycles.	11
graphene/porous Fe ₂ O ₃ nanocomposite	252.4 F/g	0.5A	~86 F/g (78.0% capacitance retention) after 1000 charge/ discharge cycles at 10A	12
GF -CNT@Fe ₂ O ₃	212 F/g	1.6A	~135F/g (95.4% capacitance retention) after 50000 charge/ discharge cycles at 7A	13
Three dimensional (3D) Iron Oxide (Fe ₂ O ₃)/ graphene aerogel (GA)	440 F/g	0.45A	297 F/g (90.5% of capacitance retention) after 2200 cycles at 3A	This work

References

1. T. Liu, X. Zhang, B. Li, J. Ding, Y. Liu, G. Li, X. Meng, Q. Cai, and J. Zhang, *RSC Adv.*, 2014, 4, 50765.

2. M. Liu and J. Sun, J. Mater. Chem. A, 2014, 2, 12068.

3. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Small, 2014, 10, 2270.

4. S. Yang, X. Song, P. Zhang, L. Gao, ACS Appl. Mater. Interfaces, 2015, 7, 75.

5. X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, and Zikang Tang, *J. Mater. Chem. A*, 2015, **3**, 20927.

6. E. Pardieu, S. Pronkin, M. Dolci, T. Dintzer, B. P. Pichon, D. Begin, C. P. Huu, P. Schaaf, S. B. Colinand, and F. Boulmedais, *J. Mater. Chem. A*, 2015, **3**, 22877.

7. L. Wang, J. Yu, X. Dong, X. Li, Y. Xie, S. Chen, P. Li, H. Hou, and Y. Song, *ACS Sus. Chem. Eng.*, 2016, **4**, 1531.

8. Z. Zhang, Y. Dong, F. Xiao and S. Wang, RSC Adv., 2015, 5, 83480.

9. Z. Song, W. Liu, P. Xiao, Z. Zhao, G. Liu, J. Qiu, Mater. Lett., 2015, 145, 44.

10. S. Ghasemi, F. Ahmadi, J. Power Sources, 2015, 289,129.

11. I. Oh, M. Kim, J. Kim, Energy, 2015, 86, 292.

12. J. Chen, J. Xua, S. Zhoua, N. Zhaoa, C. P. Wong, Nano Energy, 2015, 15, 719.

13. C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, and J. Wang, ACS Nano, 2015, **5**, 5198.