Supporting Information for

"Expedient Access to Unsymmetrical Triarylmethanes through *N*-Heterocyclic Carbene Catalysed 1,6-Conjugate Addition of 2-Naphthols to *para*-Quinone Methides"

Panjab Arde and Ramasamy Vijaya Anand*

Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO). Punjab - 140 306, India

E-mail: rvijayan@iisermohali.ac.in

Table of Contents

1. General methods	S2
2. General procedure for the 1,6-conjugate addition of 2-naphthol to p -QMs	S2
3. Characterisation of products 3	S3
4. Characterisation of products (3a to 3u)	S3-S11
5. Characterisation of products (10a to 10f)	S11-S13
6. Enantioselective 1,6-conjugate addition of 2-naphthol to 1	S13
7. HPLC data for 3	S14
8. X-ray crystallographic analysis for compound 3	S15
9. References	S16
10. ¹ H and ¹³ C NMR spectra of 3	S17
11. 1 H, 13 C and 19 F NMR spectra of (3a to 3u)	S18-S39
12. ¹ H and ¹³ C NMR spectra of (10a to 10f)	S40-S44

Experimental Section

General methods

All reactions were carried out under an argon atmosphere in an oven dried vial. Solvents were dried over calcium hydride, distilled and stored with molecular sieves. Melting points were recorded on SMP20 melting point apparatus and are uncorrected. ¹H, ¹³C and ¹⁹F spectra were recorded in CDCl₃ (400, 100 and 376 MHz respectively) on Bruker FT-NMR spectrometer. Chemical shift (δ) values are reported in parts per million relative to TMS (for ¹H and ¹³C) and BF₃.Et₂O (for ¹⁹F). High resolution mass spectra were recorded on Waters Q-TOF Premier-HAB213 spectrometer. FT-IR spectra were recorded on a Perkin–Elmer FTIR spectrometer. Single crystal X-ray data was collected using XtaLabmini X-ray diffractometer. Enantiomeric excess was determined by using Waters Chiral HPLC. Most of the reagents and starting materials were purchased from commercial sources and used as such. NHC precursors were prepared according to the literature procedure.¹ All *p*-quinone methides were prepared by following a literature procedure.² Thin layer chromatography was performed on Merck silica gel 60 F₂₅₄ TLC plates. Column chromatography was carried out through silica gel (100-200 mesh) using EtOAc/hexane as an eluent.

General procedure for the 1,6-conjugate addition of 2-naphthol to p-quinone methides:

Anhydrous CH_2Cl_2 (0.3 mL) was added to the mixture of *p*-quinone methide (0.0620 mmol), 2-naphthol (0.0680 mmol), catalyst **4** (0.0062 mmol) and sodium hydride (55-60% suspension in mineral oil) (0.0124 mmol) under argon atmosphere, and the resulting suspension was stirred at room temperature until *p*-quinone methide was completely consumed. The reaction mixture was purified through silica gel column without further workup, using EtOAc/Hexane mixture as an eluent to get the pure product.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]naphthalen-2-ol (3)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); pale yellow solid; yield 99% (28.6 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 170–172 °C; FT-IR (KBr) 3627, 3462, 2959, 1510, 1435, 1250, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.02 (d, *J* = 8.6 Hz, 1H), 7.78 (dd, *J* = 7.9, 1.0 Hz, 1H),

7.71 (d, J = 8.8 Hz, 1H), 7.43 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.34–7.30 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.8 Hz, 1H), 7.02 (s, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.23 (s, 1H), 5.44 (s, 1H), 5.20 (s, 1H), 3.78 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 153.14, 153.13, 136.8, 134.1, 133.5, 132.2, 130.1, 129.6, 129.5, 128.8, 126.8, 125.7, 123.1, 123.0, 120.6, 120.1, 114.4, 55.4, 47.9, 34.5, 30.3; HRMS (ESI): m/z calcd for C₃₂H₃₇O₃ [M+H]⁺: 469.2742; found: 469.2736.

1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(2,3-dimethoxyphenyl)methyl]naphthalen-2-ol (3a)

The reaction was performed at 0.28 mmol scale of *p*-quinone methide (**1a**); yellow solid; yield 89% (125 mg); $R_f = 0.6$ (20% EtOAc in hexane); m.p. 169–171 °C; FT-IR (KBr) 3627, 3462, 2959, 1477, 1435, 1273, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.08 (d, J = 8.6 Hz, 1H), 7.75 (dd, J = 8.1, 1.0 Hz, 1H), 7.70 (d, J =

8.9 Hz, 1H), 7.42 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.32–7.28 (m, 1H), 7.06 (d, J = 8.9 Hz, 1H), 7.03 (s, 2H), 6.99–6.95 (m, 1H), 6.84 (dd, J = 8.2, 1.4 Hz, 1H), 6.76 (dd, J = 7.8, 1.4 Hz, 1H), 6.67 (s, 1H), 5.78 (s, 1H), 5.20 (s, 1H), 3.88 (s, 3H), 3.49 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 153.1, 152.9, 146.8, 136.8, 136.6, 133.7, 131.8, 129.6, 129.3, 128.6, 126.8, 125.6, 124.5, 123.3, 123.1, 121.7, 120.4, 120.0, 111.4, 60.6, 55.9, 42.7, 34.6, 30.4; HRMS (ESI): *m/z* calcd for C₃₃H₃₉O₄ [M+H]⁺: 499.2848; found: 499.2837.

1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(3,5-dimethoxyphenyl)methyl]naphthalen-2-ol (3b)

The reaction was performed at 0.056 mmol scale of *p*-quinone methide (**1b**); pale yellow solid; yield 93% (26.2 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 72–74 °C; FT-IR (KBr) 3627, 3462, 2959, 1435, 1205, 1157, 741 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃), δ 8.04 (d, J = 8.6 Hz, 1H), 7.79 (dd, J = 8.0, 1.0 Hz, 1H), 7.72 (d, J = 8.9 Hz, 1H), 7.45 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.35–7.31 (m, 1H), 7.08 (d, J = 8.8 Hz, 1H), 7.07 (s, 2H), 6.41 (d, J = 2.2 Hz, 2H), 6.36 (t, J = 2.2 Hz, 1H), 6.21 (s, 1H), 5.50 (s, 1H), 5.20 (s, 1H), 3.70 (s, 6H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 153.3, 153.1, 145.2, 136.7, 133.6, 131.2, 129.63, 129.56, 128.8, 126.8, 125.7, 123.1, 123.0, 120.3, 120.1, 107.3, 98.9, 55.4, 48.9, 34.5, 30.4; HRMS (ESI): m/z calcd for C₃₃H₃₇O₄ [M-H]⁺: 497.2692; found: 497.2681.

1[(3,5-di-*tert*-butyl-4-hydroxyphenyl){4-(pyrrolidin-1-yl)phenyl}methyl]naphthalen-2-ol (3c)

The reaction was performed at 0.055 mmol scale of *p*-quinone methide (**1c**); red solid; yield 99% (27.7 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 109–111 °C; FT-IR (KBr) 3644, 3457, 2958, 1615, 1519, 1435, 1361, 817, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.08 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.0 Hz,

1H), 7.70 (d, J = 8.8 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.10 (s, 2H), 7.08–7.04 (m, 3H), 6.52 (d, J = 8.6 Hz, 2H), 6.20 (s, 1H), 5.63 (s, 1H), 5.15 (s, 1H), 3.30–3.22 (m, 4H), 2.01–1.96 (m, 4H), 1.36 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 152.8, 147.0, 136.4, 133.7, 132.3, 129.7, 129.6, 129.2, 128.7, 128.4, 126.6, 125.8, 123.1, 123.0, 121.2, 120.1, 112.3, 47.8, 47.7, 34.5, 30.4, 25.6; HRMS (ESI): m/z calcd for C₃₅H₄₀NO₂ [M+H]⁺: 508.3215; found: 508.3200.

1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl){4-(phenylthio)phenyl}methyl]naphthalen-2-ol (3d)

The reaction was performed at 0.050 mmol scale of *p*-quinone methide (**1d**); pale yellow solid; yield 93% (25.4 mg); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 171–173 °C; FT-IR (KBr) 3627, 3461, 2959, 1478, 1435, 1210, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.00 (d, J = 8.6 Hz, 1H), 7.81 (dd, J = 8.0, 1.0, Hz, 1H),

7.75 (d, J = 8.9 Hz, 1H), 7.46 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.37–7.34 (m, 3H), 7.30–7.21 (m, 7H), 7.08 (d, J = 8.8 Hz, 1H), 7.01 (s, 2H), 6.29 (s, 1H), 5.41 (s, 1H), 5.26 (s, 1H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 153.2, 141.5, 137.0, 136.5, 133.7, 133.5, 132.3, 131.7, 130.4, 130.1, 129.78, 129.74, 129.2, 128.9, 126.87, 126.86, 125.7, 123.3, 122.9,

120.1, 119.9, 48.3, 34.6, 30.3; HRMS (ESI): m/z calcd for C₃₇H₃₇O₂S [M-H]⁺: 545.2515; found: 545.2508.

4-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(2-hydroxynaphthalen-1-yl)methyl]-2methoxyphenyl acetate (3e)

The reaction was performed at 0.052 mmol scale of *p*-quinone methide (**1e**); pale yellow solid; yield 91% (25.1 mg); $R_f = 0.2$ (20% EtOAc in hexane); m.p. 171–173 °C; FT-IR (KBr) 3626, 3459, 2959, 1510, 1435, 1200, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.02 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H),

7.74 (d, J = 8.9 Hz, 1H), 7.47–7.42 (m, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 8.9 Hz, 1H), 7.03 (s, 2H), 6.98 (d, J = 8.1 Hz, 1H), 6.88 (d, J = 1.7 Hz, 1H), 6.80 (dd, J = 8.2, 1.8 Hz, 1H), 6.27 (s, 1H), 5.40 (s, 1H), 5.22 (s, 1H), 3.69 (s, 3H), 2.30 (s, 3H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 153.23, 153.16, 151.5, 141.2, 138.7, 136.9, 133.6, 131.6, 129.72, 129.69, 128.8, 126.9, 125.7, 123.3, 123.1, 123.0, 121.2, 120.2, 120.1, 113.2, 56.0, 48.5, 34.6, 30.3, 20.8; HRMS (ESI): *m/z* calcd for C₃₄H₃₇O₅ [M-H]⁺: 525.2641; found: 525.2620.

1-[{6-bromobenzo(d)(1,3)dioxol-5-yl}(3,5-di-*tert*-butyl-4-hydroxyphenyl)methyl} naphthalen-2-ol (3f)

The reaction was performed at 0.24 mmol scale of *p*-quinone methide (**1f**); white solid; yield 87% (116.5 mg); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 186–188 °C; FT-IR (KBr) 3633, 3461, 2959, 1477, 1234, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 7.87 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.47 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H),

7.36–7.33 (m, 1H), 7.12 (s, 1H), 7.06 (d, J = 8.9 Hz, 1H), 6.92 (s, 2H), 6.64 (s, 1H), 6.43 (s, 1H), 5.96 (d, J = 1.3 Hz, 1H), 5.85 (d, J = 1.2 Hz, 1H), 5.46 (s, 1H), 5.25 (s, 1H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 153.5, 147.9, 147.3, 137.2, 134.2, 133.6, 130.0, 129.9, 129.7, 128.8, 127.1, 125.2, 123.4, 123.0, 120.2, 119.8, 115.7, 113.0, 110.5, 101.8, 48.7, 34.6, 30.4; HRMS (ESI): m/z calcd for C₃₂H₃₄BrO₄ [M+H]⁺: 561.1640; found: 561.1632.

1-{[4-(*tert*-butyl)phenyl](3,5-di-*tert*-butyl-4-hydroxyphenyl)methyl}naphthalen-2-ol (3g)

The reaction was performed at 0.057 mmol scale of *p*-quinone methide (**1g**); pale yellow solid; yield 90% (25.3 mg); $R_f = 0.7$ (20% EtOAc in hexane); m.p. 182–184 °C; FT-IR (KBr) 3633, 3465, 2961, 1435, 1210, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.08 (d, J = 8.6 Hz, 1H), 7.80 (dd, J = 8.0, 1.0 Hz, 1H), 7.73 (d, J =

8.8 Hz, 1H), 7.46 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.36–7.32 (m, 3H), 7.18 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.8 Hz, 1H), 7.03 (s, 2H), 6.28 (s, 1H), 5.42 (s, 1H), 5.20 (s, 1H), 1.35 (s, 18H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 153.0, 150.0, 139.1, 136.6, 133.6, 131.9, 129.7, 129.4, 128.8, 128.6, 126.8, 126.0, 125.8, 123.1, 123.0, 120.7, 120.1, 48.1, 34.6, 34.5, 31.5, 30.3; HRMS (ESI): *m/z* calcd for C₃₅H₄₁O₂ [M-H]⁺: 493.3107; found: 493.3100.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(4-ethylphenyl)methyl]naphthalen-2-ol (3h)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (**3h**); pale yellow solid; yield 87% (25.2 mg); $R_f = 0.6$ (20% EtOAc in hexane); m.p. 129–131 °C; FT-IR (KBr) 3633, 3465, 2959, 1435, 1206, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.06 (d, J = 8.6 Hz, 1H), 7.79 (dd, J = 8.0, 1.0 Hz, 1H), 7.72 (d, J = 8.8 Hz,

1H), 7.44 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.35–7.31 (m, 1H), 7.16 (s, 4H), 7.08 (d, J = 8.8 Hz, 1H), 7.03 (s, 2H), 6.27 (s, 1H), 5.43 (s, 1H), 5.20 (s, 1H), 2.62 (q, J = 7.6 Hz, 2H), 1.34 (s, 18H), 1.21 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.14, 153.06, 143.0, 139.4, 136.7, 133.6, 131.9, 129.6, 129.5, 129.0, 128.8, 128.6, 126.8, 125.8, 123.1, 123.0, 120.7, 120.1, 48.3, 34.5, 30.3, 28.6, 15.7; HRMS (ESI): m/z calcd for C₃₃H₃₉O₂ [M+H]⁺: 467.2950; found: 467.2938.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(9H-fluoren-2-yl)methyl]naphthalen-2-ol (3i)

The reaction was performed at 0.052 mmol scale of *p*-quinone methide (1i); pale yellow solid; yield 90% (24.8 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 212–214 °C; FT-IR 3629, 3465, 2958, 1435, 1210, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.08 (d, J = 8.6 Hz, 1H), 7.81 (dd, J = 8.0, 1.0 Hz, 1H), 7.78–7.74 (m, 3H),

7.52 (d, J = 7.4 Hz, 1H), 7.47–7.43 (m, 2H), 7.39–7.27 (m, 4H), 7.11 (d, J, = 8.9 Hz, 1H), 7.08 (s, 2H), 6.39 (s, 1H), 5.53 (s, 1H), 5.24 (s, 1H), 3.88 (d, J = 22.0 Hz, 1H), 3.79 (d, J = 22.0 Hz, 1H), 3.49 (s, 3H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 153.2, 144.2, 143.5, 141.6, 140.9, 140.7, 136.9, 136.9, 133.6, 132.1, 129.7, 129.6, 128.8, 127.9, 126.8,

126.7, 125.8, 125.7, 125.2, 123.2, 123.0, 120.5, 120.3, 120.1, 120.0, 48.9, 37.1, 34.6, 30.4; HRMS (ESI): *m/z* calcd for C₃₈H₃₉O₂ [M+H]⁺: 527.2950; found: 527.2941.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl]naphthalen-2-ol (3j)

The reaction was performed at 0.068 mmol scale of *p*-quinone methide (**1j**); pale yellow solid; yield 86% (25.6 mg); $R_f = 0.7$ (20% EtOAc in hexane); m.p. 129–131 °C; FT-IR (KBr) 3644, 3465, 2924, 1749, 1615, 1435, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.04 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.9

Hz, 1H), 7.45 (ddd, J = 8.5, 6.8, 1.3 Hz, 1H), 7.36–7.24 (m, 6H), 7.09 (d, J = 8.9 Hz, 1H), 7.03 (s, 2H), 6.31 (s, 1H), 5.43 (s, 1H), 5.23 (s, 1H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.22, 153.17, 142.2, 136.8, 133.6, 131.9, 129.7, 129.6, 129.1, 129.0, 128.8, 127.0, 126.8, 125.8, 123.2, 123.0, 120.3, 120.1, 48.7, 34.6, 30.3; HRMS (ESI): *m/z* calcd for C₃₁H₃₃O₂ [M-H]⁺: 437.2481; found: 437.2469.

1-[(1,1'-biphenyl)-4-yl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl]naphthalen-2-ol (3k)

The reaction was performed at 0.27 mmol scale of *p*-quinone methide (**1k**); pale yellow solid; yield 86% (119 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 135–137 °C; FT-IR (KBr) 3629, 3465, 2922, 1435, 1266, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.08 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 8.9

Hz, 1H), 7.61–7.56 (m, 4H), 7.48–7.42 (m, 3H), 7.37–7.32 (m, 4H), 7.10 (d, J = 8.9 Hz, 1H), 7.07 (s, 2H), 6.36 (s, 1H), 5.47 (s, 1H), 5.24 (s, 1H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 153.2, 141.3, 140.8, 139.7, 136,9, 133.6, 131.8, 129.7, 129.6, 129.5, 128.9, 128.8, 127.7, 127.4, 127.1, 126.8, 125.8, 123.2, 123.0, 120.3, 120.1, 48.4, 34.6, 30.3; HRMS (ESI): m/z calcd for C₃₇H₃₇O₂ [M-H]⁺: 513.2794; found: 513.2789.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(naphthalen-1-yl)methyl]naphthalen-2-ol (3l)

The reaction was performed at 0.058 mmol scale of *p*-quinone methide (11); pale yellow solid; yield 92% (26.1 mg); $R_f = 0.6$ (20% EtOAc in hexane); m.p. 170–172 °C; FT-IR (KBr) 3629, 3465, 2959, 1435, 1210, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 1H), 7.90 (dd, J = 8.2, 2.7 Hz, 2H), 7.81 (dd, J = 7.9, 1.2 Hz, 1H),

7.80 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.52–7.46 (m, 1H), 7.43–7.30 (m, 4H),

7.16 (d, J = 7.1 Hz, 1H), 7.04 (d, J = 8.9 Hz, 1H), 7.01 (brs, 2H), 6.89 (s, 1H), 5.62 (s, 1H), 5.20 (s, 1H), 1.29 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 153.2, 138.5, 136.9, 136.8, 134.2, 133.4, 132.0, 131.5, 129.7, 129.6, 129.0, 128.8, 128.3, 127.0, 126.9, 126.6, 126.0, 125.9, 125.8, 124.2, 123.2, 122.8, 120.0, 46.0, 34.5, 30.3; HRMS (ESI): m/z calcd for C₃₅H₃₇O₂ [M+H]⁺: 489.2793; found: 489.2787.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(pyren-1-yl)methyl]naphthalen-2-ol (3m)

The reaction was performed at 0.048 mmol scale of *p*-quinone methide (**1m**); yellow solid; yield 75% (20.2 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 226–228 °C; FT-IR (KBr) 3629, 3465, 2959, 1435, 1210, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.25–8.15 (m, 3H), 8.10–7.99 (m, 5H), 7.98–7.92 (m, 1H), 7.84–7.79 (m, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.36–7.27

(m, 3H), 7.23 (s, 1H), 7.09 (d, J = 8.9 Hz, 2H), 7.06 (brs, 1H), 5.57 (s, 1H), 5.23 (s, 1H), 1.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 153.3, 137.08, 137.06, 135.9, 133.5, 131.9, 131.6, 130.9, 130.7, 129.7, 129.2, 128.8, 128.2, 127.7, 127.4, 127.0, 126.9, 126.1, 126.0, 125.5, 125.48, 125.44, 125.3, 125.0, 123.4, 123.2, 122.9, 120.4, 120.1, 46.4, 34.5, 30.3; HRMS (ESI): m/z calcd for C₄₁H₃₉O₂ [M+H]⁺: 563.2950; found: 563.2945.

1-[(4-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl]naphthalen-2-ol (3n)

The reaction was performed at 0.054 mmol scale of *p*-quinone methide (**1n**); pale yellow solid; yield 92% (25.5 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 158–160 °C; FT-IR (KBr) 3627, 3460, 2960, 1486, 1435, 1210, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 7.95 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.45–7.42 (m, 3H), 7.34 (t, J = 7.4 Hz, 1H),

7.16 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.9 Hz, 1H), 7.00 (s, 2H), 6.26 (s, 1H), 5.37 (s, 1H), 5.26 (s, 1H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 153.1, 141.3, 137.1, 133.4, 132.0, 131.4, 131.0, 129.8, 129.7, 128.9, 126.9, 125.7, 123.3, 122.9, 120.8, 120.0, 119.8, 48.2, 34.6, 30.3; HRMS (ESI): m/z calcd for C₃₁H₃₂BrO₂ [M-H]⁺: 515.1586; found: 515.1579.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(2-fluorophenyl)methyl]naphthalen-2-ol (30)

The reaction was performed at 0.064 mmol scale of *p*-quinone methide (**1o**); pale yellow solid; yield 97% (28.4 mg); $R_f = 0.6$ (20% EtOAc in hexane); m.p. 134–136 °C; FT-IR (KBr) 3629, 3459, 2959, 1487, 1435, 1228, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H),

7.28–7.22 (m, 1H), 7.18–7.09 (m, 2H), 7.08–7.02 (m, 2H), 6.97 (s, 2H), 6.58 (s, 1H), 5.50 (s, 1H), 5.25 (s, 1H), 1.32 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, J = 245.0 Hz), 153.7, 153.5, 137.2, 133.5, 130.7 (d, J = 3.7 Hz), 130.6, 129.8, 129.6, 128.9, 128.8 (d, J = 4.2 Hz), 128.7, 127.0, 125.1, 124.7 (d, J = 3.5 Hz), 123.3, 122.7, 120.1, 119.2, 115.5 (d, J = 22.3 Hz), 41.4 (d, J = 3.3 Hz), 34.6, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.2; HRMS (ESI): *m/z* calcd for C₃₁H₃₄FO₂ [M+H]⁺: 457.2543; found: 457.2533.

1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl){4-(trifluoromethyl)phenyl}methyl]naphthalen-2ol (3p)

The reaction was performed at 0.055 mmol scale of *p*-quinone methide (**1p**); pale yellow solid; yield 86% (24.1 mg); $R_f = 0.7$ (20% EtOAc in hexane); m.p. 160–162 °C; FT-IR 3637, 3462, 2961, 1435, 1326, 1123, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 7.95 (d, J = 8.6 Hz, 1H), 7.81 (dd, J = 8.0, 1.0 Hz,

1H), 7.76 (d, J = 8.9 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.46–7.44 (m, 1H), 7.41 (d, J = 7.9 Hz, 2H), 7.37–7.33 (m, 1H), 7.09 (d, J = 8.9 Hz, 1H), 6.99 (s, 2H), 6.37 (s, 1H), 5.37 (s, 1H), 5.28 (s, 1H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 153.2, 146.6 (apparent d, J = 1.0 Hz), 137.1, 133.4, 131.2, 130.0, 129.8, 129.6, 129.3, 129.0, 128.6, 127.0, 125.8 (q, J = 3.7 Hz), 125.7, 124.3 (q, J = 270.3 Hz), 123.4, 122.8, 120.0, 119.6, 48.5, 34.6, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4; HRMS (ESI): m/z calcd for C₃₂H₃₄F₃O₂ [M+H]⁺: 507.2511; found: 507.2502.

Methyl-4-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(2-hydroxynaphthalen-1-yl)methyl] benzoate (3q)

The reaction was performed at 0.057 mmol scale of *p*-quinone methide (**1q**); pale yellow solid; yield 92% (25.93 mg); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 184–186 °C; FT-IR (KBr) 3620, 3455, 2955, 1712, 1510, 1433, 1200, 745 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.44–7.38 (m, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 8.9 Hz, 1H), 6.98 (s, 2H), 6.34 (s, 1H), 5.38 (s, 1H), 5.25 (s, 1H), 3.89 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 153.4, 153.2, 147.8, 137.1, 133.4, 131.3, 130.2, 129.9, 129.7, 129.3, 128.9, 128.8, 126.9, 125.7, 123.3, 122.9, 120.0, 119.6, 52.2, 48.8, 34.6, 30.3; HRMS (ESI): *m/z* calcd for C₃₂H₃₅O₄ [M-H]⁺: 495.2536; found: 495.2517.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(furan-2-yl)methyl]naphthalen-2-ol (3r)

The reaction was performed at 0.070 mmol scale of *p*-quinone methide (**1r**); brown solid; yield 68% (20.5 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 71–73 °C; FT-IR (KBr) 3628, 3468, 2959, 1436, 1234, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.6 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.9 Hz, 1H),

7.47 (ddd, J = 8.5, 6.8, 1.4 Hz, 1H), 7.43 (d, J = 1.1 Hz, 1H), 7.38–7.31 (m, 1H), 7.10 (d, J = 8.9 Hz, 1H), 7.04 (s, 2H), 6.34 (dd, J = 3.2, 1.9 Hz, 1H), 6.31 (s, 1H), 6.09 (d, J = 3.2 Hz, 1H), 5.77 (s, 1H), 5.21 (s, 1H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 153.3, 142.6, 136.7, 133.3, 129.80, 129.78, 129.6, 128.9, 126.9, 124.9, 123.2, 122.5, 119.8, 117.8, 110.5, 108.8, 42.2, 34.5, 30.3; HRMS (ESI): m/z calcd for C₂₉H₃₃O₃ [M+H]⁺: 429.2429; found: 429.2425.

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(thiophen-2-yl)methyl]naphthalen-2-ol (3s)

The reaction was performed at 0.067 mmol scale of *p*-quinone methide (**1s**); yellow solid; yield 75% (22.2 mg); $R_f = 0.6$ (20% EtOAc in hexane); m.p. 119–121 °C; FT-IR (KBr) 3627, 3464, 2959, 1435, 1210, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.9 Hz,

1H), 7.47 (ddd, J = 8.5, 6.9, 1.3 Hz, 1H), 7.37–7.33 (m, 1H), 7.27–7.25 (m, 1H), 7.16 (s, 2H), 7.10 (d, J = 8.9 Hz, 1H), 6.95 (dd, J = 5.1, 3.5 Hz, 1H), 6.83 (d, J = 3.5 Hz, 1H), 6.48 (s, 1H), 5.59 (s, 1H), 5.22 (s, 1H), 1.36 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 153.1, 146.8, 136.7, 133.1, 131.5, 129.8, 129.6, 128.9, 127.0, 126.9, 126.8, 125.7, 125.2, 123.3, 122.7, 120.5, 120.0, 43.7, 34.6, 30.3; HRMS (ESI): m/z calcd for C₂₉H₃₃O₂S [M+H]⁺: 445.2201; found: 445.2208.

Cyclopenta-2,4-dien-1-yl[2-{(3,5-di-tert-butyl-4-hydroxyphenyl)(3-hydroxynaphthalen-2-yl)methyl}cyclopenta-2,4-dien-1-yl]iron (3t)

The reaction was performed at 0.050 mmol scale of *p*-quinone methide (**1t**); dark green solid; yield 74% (20.1 mg); $R_f = 0.7$ (20% EtOAc in hexane); m.p. 139–141 °C; FT-IR (KBr) 3637, 3467, 2958, 1435, 1232, 820, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.17 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.52 (t, J =

7.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.20 (s, 2H), 7.06 (d, J = 8.8 Hz, 1H), 6.06 (s, 1H), 5.59 (s, 1H), 5.11 (s, 1H), 4.27–4.25 (m, 2H), 4.20 (s, 1H), 4.05 (s, 5H), 3.97 (s, 1H), 1.38 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 152.67, 152.65, 136.0, 133.2, 132.5, 129.5, 129.1, 128.9, 126.5, 125.2, 123.1, 123.0, 121.9, 120.1, 91.9, 69.4, 69.4, 69.3, 68.6, 67.6, 43.2, 34.5, 30.5; HRMS (ESI): m/z calcd for C₃₅H₃₉FeO₂ [M+H]⁺: 547.2299; found: 547.2288.

1-[(4-hydroxy-3,5-diisopropylphenyl)(phenyl)methyl]naphthalen-2-ol (3u)

The reaction was performed at 0.074 mmol scale of *p*-quinone methide (**1s**); pale yellow solid; yield 75% (22.93 mg); $R_f = 0.5$ (20% EtOAc in hexane); m.p. 119–121 °C; FT-IR (KBr) 3626, 3459, 2959, 1510, 1435, 1200, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.6 Hz, 1H), 7.83–7.72 (m, 3H), 7.44 (ddd, *J* = 8.3, 7.0, 1.2 Hz, 1H),

7.36–7.26 (m, 4H), 7.15–7.09 (m, 1H), 7.09 (d, J = 8.9 Hz, 1H), 6.91 (s, 2H), 6.33 (s, 1H), 5.43 (s, 1H), 4.82 (s, 1H), 3.11 (sept, J = 6.9 Hz, 1H), 1.16 (d, J = 1.0 Hz, 6H), 1.14 (d, J = 1.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 149.4, 142.0, 134.8, 133.4, 129.6, 129.13, 129.06, 128.8, 127.9, 127.1, 126.8, 126.5, 124.3, 122.9, 120.1, 117.9, 109.6, 48.6, 27.5, 22.8, 22.7; HRMS (ESI): m/z calcd for C₂₉H₂₉O₂ [M-H]⁺: 409.2167; found: 409.2152.

1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]-6-methoxynaphthalen-2-ol (10a)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); orange solid; yield 92% (28.3 mg); $R_f = 0.3$ (20% EtOAc in hexane); m.p. 81–83 °C; FT-IR (KBr) 3627, 3468, 2958, 1606, 1510, 1435, 1233, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 7.94 (d, J = 9.6 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.16 (d, J = 8.7

Hz, 2H), 7.13–7.10 (m, 2H), 7.05 (d, *J* = 8.8 Hz, 1H), 7.03 (s, 2H), 6.85 (d, *J* = 8.7 Hz, 2H),

6.20 (s, 1H), 5.28 (s, 1H), 5.21 (s, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 155.7, 153.1, 151.5, 136.7, 134.2, 132.2, 130.6, 130.1, 128.7, 128.2, 125.7, 124.6, 121.0, 120.6, 118.9, 114.4, 107.2, 55.5, 55.4, 48.0, 34.5, 30.4; HRMS (ESI): *m/z* calcd for C₃₃H₃₉O₄ [M+H]⁺: 499.2848; found: 499.2838.

6-bromo-1-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]naphthalen-2ol (10b)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); pale yellow solid; yield 95% (32.1 mg); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 151–153 °C; FT-IR (KBr) 3629, 3461, 2958, 1509, 1435, 1251 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 7.92 (d, J = 2.1 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.63 (d, J =

8.9 Hz, 1H), 7.47 (dd, J = 9.2, 2.1 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 8.9 Hz, 1H), 6.99 (s, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.16 (s, 1H), 5.47 (s, 1H), 5.22 (s, 1H), 3.78 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 153.4, 153.2, 136.9, 133.7, 132.1, 131.7, 130.9, 130.6, 130.1, 129.9, 128.6, 125.6, 124.9, 121.2, 120.9, 116.9, 114.5, 55.4, 47.9, 34.6, 30.3; HRMS (ESI): *m/z* calcd for C₃₂H₃₄BrO₃ [M-H]⁺: 545.1692; found: 545.1680. **1-[(3,5-di-***tert***-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]-6-phenylnaphthalen-2-ol (10c)**

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); yellow solid; yield 64% (99%); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 89–91 °C; FT-IR (KBr) 3626, 3460, 2922, 1436, 1265, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 9.0 Hz, 1H), 8.00 (d, *J* = 1.8 Hz, 1H), 7.79 (d, *J* = 8.9 Hz, 1H), 7.83–7.72 (m, 3H), 7.68 (s, 1H), 7.47 (t, *J* = 7.6

Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.8 Hz, 1H), 7.06 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.27 (s, 1H), 5.49 (s, 1H), 5.23 (s, 1H), 3.79 (s, 3H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 153.3, 153.2, 141.0, 136.8, 135.9, 134.0, 132.7, 132.1, 130.1, 129.9, 129.8, 128.9, 127.3, 127.2, 126.7, 126.4, 125.7, 123.6, 120.6, 120.5, 114.4, 55.4, 48.0, 34.6, 30.4; HRMS (ESI): *m/z* calcd for C₃₈H₃₉O₃ [M-H]⁺: 543.2899; found: 543.2880.

5-[(3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]quinolin-6-ol (10d)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); yellow solid; yield 86% (24.9 mg); $R_f = 0.3$ (50% EtOAc in hexane); m.p. 239–241 °C; FT-IR (KBr) 3636, 3450, 2958, 1509, 1248, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 8.71 (d, *J* = 4.2 Hz, 1H), 8.32 (d, *J* = 8.6 Hz, 1H), 7.95 (d, *J* = 9.1 Hz,

1H), 7.32 (d, J = 9.0 Hz, 1H), 7.30–7.28 (m, 1H), 7.14 (d, J = 8.6 Hz, 2H), 7.02 (s, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.53 (s, 1H), 6.24 (s, 1H), 5.23 (s, 1H), 3.78 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 153.5, 153.1, 146.9, 144.6, 136.8, 134.0, 132.1, 131.7, 130.2, 130.1, 128.7, 125.7, 123.7, 121.2, 120.7, 114.4, 55.4, 47.4, 34.5, 30.3; HRMS (ESI): m/z calcd for C₃₁H₃₆NO₃ [M+H]⁺: 470.2695; found: 470.2685.

Methyl-4-[(3,5-di-*tert*-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]-3-hydroxy-2naphthoate (10e)

The reaction was performed at 0.062 mmol scale of *p*-quinone methide (1); yellow solid; yield 64% (20.8 mg); $R_f = 0.4$ (20% EtOAc in hexane); m.p. 148–150 °C; FT-IR (KBr) 3635, 2957, 1710, 1510, 1439, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ 10.98 (s, 1H), 8.48 (s, 1H), 7.78 (d, J = 7.9 Hz, 2H), 7.28–7.21 (m, 2H),

7.13 (d, J = 8.3 Hz, 2H), 7.12 (s, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.57 (s, 1H), 5.05 (s, 1H), 4.02 (s, 3H), 3.76 (s, 3H), 1.31 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 157.5, 154.4, 152.0, 136.8, 136.7, 135.4, 132.5, 132.2, 132.1, 130.3, 129.8, 128.2, 127.7, 126.4, 124.6, 123.2, 113.9, 113.5, 55.3, 52.8, 45.5, 34.5, 30.4; HRMS (ESI): m/z calcd for C₃₄H₃₇O₅Na [M+Na]⁺: 549.2617; found: 549.2605.

Enantioselective 1,6-conjugate addition of 2-naphthol to 1 :

Anhydrous HFIP (0.5 mL) was added to the mixture of *p*-quinone methide (1) (20 mg, 0.0620 mmol), 2-naphthol (8 mg, 0.0680 mmol), catalyst (3mg, 0.0062 mmol) and sodium hydride (55-60% suspension in mineral oil) (0.6 mg, 0.0124 mmol) under argon atmosphere, and the resulting suspension was stirred at room temperature. After 48 h the reaction was quenched by 2 mL of water and extracted with CH_2Cl_2 (2X3 mL). The organic layer dried over anhydrous Na₂SO₄ and solvent was removed under reduced pressure. The residue was purified through silica gel column, using EtOAc/Hexane mixture as an eluent, to gate pale

yellow solid (8 mg, 30%, 8% ee). The enantiomeric excess was determined by HPLC: CHIRALCEL AD-H, n-hexane/i-PrOH (99/1).

HPLC data for 3 (racemic)

Retention time 1.0 mL min⁻¹, 220 nm.

HPLC data for 3 (enentioenriched)

Retention time 1.0 mL min⁻¹, 220 nm, 18.58 min (minor enantiomer), 20.60 min (major enantiomer).

X-Ray crystallographic analysis for compound 3:³

Crystal data and structure refinement for compound 3.

Identification code	3
Empirical formula	$C_{32}H_{36}O_3$
Formula weight	468.61
Temperature/K	566(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.9865(10)
b/Å	11.6624(10)
c/Å	20.9000(17)
α/°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	2677.9(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.162
μ/mm^{-1}	0.073
F(000)	1008.0
Crystal size/mm ³	$0.200\times0.200\times0.200$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	6.416 to 54.954
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -27 \le l \le 27$
Reflections collected	29152
Independent reflections	$6127 [R_{int} = 0.2643, R_{sigma} = 0.1361]$
Data/restraints/parameters	6127/0/325
Goodness-of-fit on F^2	0.957
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0738, wR_2 = 0.2027$
Final R indexes [all data]	$R_1 = 0.1081, wR_2 = 0.2382$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.15
Flack parameter	-2.8(10)

Reference:

[1] D. Enders, K. Breuer, U. Kallfass, T. Balensiefer, Synthesis 2003, 1292.

[2] (a) W. D. Chu, L. F. Zhang, X. Bao, X. H. Zhao, C. Zeng, J. Y. Du, G. B. Zhang, F. X.
Wang, X. Y. C. A. Ma, Fan, *Angew. Chem. Int. Ed.* 2013, **52**, 9229; (b) V. Reddy, R. V.
Anand, *Org. Lett.* 2015, **17**, 3390-3393

[3] CCDC NO: 1452070.

¹H NMR Spectrum of 3

¹H NMR Spectrum of 3a

¹H NMR Spectrum of 3b

¹H NMR Spectrum of 3c

¹H NMR Spectrum of 3d

¹H NMR Spectrum of 3e

¹H NMR Spectrum of 3f

¹H NMR Spectrum of 3g

¹H NMR Spectrum of 3h

¹H NMR Spectrum of 3i

¹H NMR Spectrum of 3j

¹H NMR Spectrum of 3k

¹H NMR Spectrum of 3l

¹H NMR Spectrum of 3m

¹H NMR Spectrum of 3n

¹H NMR Spectrum of 30

¹⁹F NMR Spectrum of 30

¹³C NMR Spectrum of 3p

¹H NMR Spectrum of 3q

¹H NMR Spectrum of 3r

¹H NMR Spectrum of 3s

¹H NMR Spectrum of 3t

¹H NMR Spectrum of 3u

¹H NMR Spectrum of 10a

¹H NMR Spectrum of 10b

¹H NMR Spectrum of 10c

¹H NMR Spectrum of 10d

¹H NMR Spectrum of 10e

