Supporting Information

Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva

Xing-yu Long,^{a,b} Jia-yuan Li,^a Dong Sheng^a and Hong-zhen Lian*^a

 ^a State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, P. R. China
 ^b Editorial Department of Journal, Guizhou Normal University, 180 Baoshan

^o Editorial Department of Journal, Guizhou Normal University, 180 Baoshan North Road, Guiyang 550001, P. R. China

**Corresponding author. Tel.:* +86-25-83686075; *fax:* +86-25-83325180. *E-mail: hzlian@nju.edu.cn (H. Z. Lian).*

Part 1. Supplementary figures

Fig. S1. Additional characterization of Fe₃O₄ MNCs affinity probe. A. EDX; B. FT-IR; C. XRD; D. Hysteresis loop (Inset shows magnetic apparent behavior).

Fig. S2. Graphic illustration Fe₃O₄ MNCs composed of several monocrystallines.

Fig. S3. MALDI-TOF MS spectra of mixture of bovine α -casein digest (10 pmol) and β -casein digest (10 pmol) enriched by Fe₃O₄ MNCs affinity probes prepared in different synthesis time. A. 4 h; B. 8 h; C. 12 h.

Fig. S4. The hydrodynamic diameters of Fe_3O_4 MNCs in different synthesis time. A. 4 h, aggregated severely; B. 8 h, larger hydrodynamic diameter than SEM/TEM measurement; C. 12 h, aggregated slightly. ED: Efficient diameter.

Fig. S5. MALDI-TOF MS spectra of bovine α -casein digest (10 pmol) enriched by different Fe₃O₄ NPs affinity materials. A. Self-prepared Fe₃O₄ MNCs; B. Commercial Fe₃O₄ NPs (20 nm); C. Commercial Fe₃O₄ NPs (100-300 nm).

Fig. S6. MALDI-TOF MS spectra of phosphopeptides from tryptic digests of bovine α-casein, β-casein, and BSA with different molar ratios enriched by Fe_3O_4 MNCs and commercial TiO₂ NP_S. Left: Without enrichment; Middle: After enrichment by Fe_3O_4 MNCs affinity materials; Right: After enrichment by commercial TiO₂ NP_S. Analytes: Bovine α-casein:β-casein:BSA: A. 1:1:1; B. 1:1:10; C. 1:1:50. "*" indicates phosphopeptides.

Fig. S7. Recyclability test of Fe₃O₄ MNCs affinity probe in enrichment of the mixture of bovine α -casein digest (10 pmol) and β -casein digest (10 pmol). (a-c) represent the 1st to 3rd reuse of the material.

Fig. S8. MALDI-TOF MS spectra of phosphopeptides from tryptic digests of non-fat milk treated with different affinity materials. A. Without enrichment; B. Fe₃O₄ MNCs; C. Commercial TiO₂ NPs. "*" indicates phosphopeptides or the corresponding doubly charged ions peaks; "#" demonstrates the metastable ion losses of phosphoric acid or dephosphorylate fragments of phosphopeptide. The data in parentheses represent *S*/*N* ratios.

S10

Fig. S9. MALDI-TOF/TOF mass spectra of human saliva treated with Fe₃O₄ MNCs affinity probe for the precursor ion at m/z of 1074.6 (I), 1125.5 (II), 1270.4 (III), 1345.5 (IV), 1426.5 (V), 1501.6 (VI), 1539.6 (VII), 1589.5 (VIII), 1704.5 (IX), 1752.6 (X), 1898.7 (XI), 1142.4 (XII), and 1405.4 (XIII). The intensity is very low in MS spectrum, but MS/MS experiment shows the characteristic loss of 98 Da, and also provides unambiguous identification, *e.g.* the peptide at m/z 1270.4 is phosphopeptide due to the presence of the fragment ion at m/z 1172.5 adjacent to the parent ion with a mass difference of 98 Da in MS/MS spectrum. "#" indicates fragment ion peak with a loss of 98 Da; "^" represents fragment ion peaks with losses of 43 Da, 17 Da, or 16 Da.

Part 2. Supplementary tables

hkl	2θ (°)	β (°)	β (rad)	κ	λ (nm)	D (nm)	D (nm)
220	30.2	0.1299	0.002266			63.0	
311	35.6	0.1299	0.002266			64.0	
400	43.2	0.2165	0.003777	0.89	0.154056	39.5	50.0
511	57.1	0.3464	0.006043			26.0	
440	62.6	0.1732	0.003021			53.5	

Table S1. The single Fe_3O_4 mono-crystalline nanoparticle size calculated by different planes (*hkl*) directions*

* Calculated by Eq. 1 (Scherrer equation). *h*, *k*, *l*: Crystal face directions; θ : Bragg diffraction angle, degree; β : Half height width of the diffraction peak, rad; κ : Constant, 0.89; λ : The incident X-ray wavelength, 0.154 056 nm; *D*: Particle size of crystalline, nm; D: The mean particle size of crystalline, nm.

$$D = \kappa \lambda / (\beta \cos \theta)$$

(1)

Samth agin time	Re	epresentative p	phosphopeptic	les [M+H] ⁺ (I	Da)
Synthesis time	1466.6	1660.8	1951.9	2061.7	2556.0
(11)			S/N		
4	498.45	484.21	644.39	485.18	798.31
8	1044.32	1368.25	1769.93	1356.12	2234.77
12	450.49	495.11	700.50	443.37	669.09

Table S2. The S/N values of representative phosphopeptides adsorbed by Fe_3O_4 MNCs prepared in different synthesis time

Fe ₃ O ₄ MNCs		Representative phosphopeptides [M+H] ⁺ (Da)					
		1466.5	1660.6	1927.5	1951.7		
		S/N value					
Self-prepared		1520.17	1717.07	1318.37	2905.54		
Commercial	Labelled 20 nm	994.48	1256.09	893.30	2034.17		
	Labelled 100-300 nm	607.20	1044.95	377.19	1856.17		

Table S3. The S/N values of representative phosphopeptides adsorbed by self-prepared and commercial Fe_3O_4 MNCs (Labelled 20 nm and 100-300 nm)

	<i>S</i> / <i>N</i> for before	S/N for after	$E \Gamma$	Average EE	
[M+U]	enrichment	enrichment	$L\Gamma$	Average Er	
1466.9	89.95	760.89	8.5		
1482.9	50.60	449.86	8.9		
1661.1	139.01	1094.82	8.0		
1952.3	195.96	1473.93	7.6	7.2	
2062.2	61.49	439.19	7.2		
2556.6	41.68	272.16	6.6		
3122.8	23.07	68.85	3.0		

Table S4. The enrichment factor (EF) values obtained by comparing with the ratio ofS/N for after/before enrichment phosphopeptides

Position	$[M+H]^+$	Number of phosphoryl group	Amino acid sequence	Fe ₃ O ₄ MNCs	TiO ₂
β-c/48-63	1031.5^	1	FQ[pS]EEQQQTEDELQDK		
β-c/16-40	1562.2^	4	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR		
$\alpha S_1 / 121 - 134$	1660.9	1	VPQLEIVPN[pS]AEER		\checkmark
$\alpha S_{1}/104-119$	1833.9	1	YLGEYLIVPN[pS]AEER		
$\alpha S_{1}/104-119$	1856.7	1	YLGEYLIVPN[pS]AEER-Na		
$\alpha S_1 / 119 - 134$	1952.1	1	YKVPQLEIVPN[pS]AEER		\checkmark
β-c/48-63	2061.9	1	FQ[pS]EEQQQTEDELQDK		\checkmark
β-c/45-63	2432.2	1	IEKFQ[pS]EEQQQTEDELQDK		
β-c/48-67	2556.2	1	FQ[pS]EEQQQTEDELQDKIHPF		
β-c/16-40	3122.3	4	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR		\checkmark
		The number of phosphop	eptides obtained	10	5

Table S5. Identified phosphopeptides from proteolytic digests of non-fat milk with Fe₃O₄ MNCs and commercial TiO₂ NPs affinity materials

"[pS]" shows phosphorylation on serine; "^" denotes doubly charged peak;

No	[]]]	Number of phosphoryl	Lossos (Da)	Characteristic	
INO.		group	LUSSES (Da)	Characteristic	
1	1074.6	1	98; 43; 17	[pS]; [Ac-]; [Q*]	
2	1125.5	1	98	[pS]	
3	1142.4	0	17	[Q*]	
4	1270.4	2	98; 196	2[pS]	
5	1345.5	1	98; 17	[pS]; [Q*]	
6	1405.4	0	43	[Ac-]	
7	1426.5	2	98; 196;17	2[pS]; [Q*]	
8	1501.6	1	98	[pS]	
9	1539.6	2	98; 196	2[pS]	
10	1589.5	1	98	[pS]	
11	1704.5	1	98; 17	[pS]; [Q*]	
12	1752.6	2	98; 196;16	2[pS]; [Mo]	
13	1898.7	2	98; 196;16	2[pS]; [Mo]	

Table S6. Identification and characterization of the special information of the parent

 ions for capturing endogenous phosphopeptdies from human saliva

[pS]: Phosphoric acid group; [Ac-]: Acetylation; [Mo]: Oxidation on methionine;[Q*]: Deletion or truncation of N-terminal on glutamine.

Table S7. Comparisons of different types of metal oxides (MOs) nanoparticles (NPs) or functionalized magnetic-MOs affinity probes for phosphopeptides enrichment, in regards to their magnetic saturation (M_s), separation mode and time, BSA interference, detection limit, and the capability of capturing phosphopeptides from non-fat milk tryptic digests

Typical affinity probas	M_s	Separation mode	BSA	Detection limit	Number of phosphopeptides captured from	Dofe
Typical annity probes	(emu/g)	/ Time (min or s)	interference	(DL, fmol)	non-fat milk tryptic digests	Kels.
	196	MS	50 fald	200	13	[01]
Fe ₃ O ₄ @LuPO ₄	18.0	(within 1 min)	30-101a			[31]
NiO NPs	-		50-fold	100	15	[S2]
ZrO ₂ aerogel	-	CS	100-fold	NM	17	[S3]
Octahedral SnO ₂	-	(5 min)	100-fold	800	14	[S4]
SnO ₂ -ZnSn(OH) ₆	-		NM	20	15	[85]
SiO /TiO	-	MC	100-fold	10	NM	[86]
SIO ₂ / IIO ₂		(4 min)		10		[30]
Fe ₃ O ₄ @Ti-mSiO ₂	33.8		100-fold	10	16	[S7]
Fe ₃ O ₄ @mTiO ₂	21.2	MS	1000-fold	NM	NM	[S8]
Fe_3O_4 @ZrO ₂	29.9	(NM)	100-fold	250	NM	[S9]
Fe ₃ O ₄ @Ga ₂ O ₃	NM		50-fold	40	NM	[S10]

		-				
Fe ₃ O ₄ @Al ₂ O ₃	NM		50-fold	NM	12	[S11]
Fe ₃ O ₄ @fTiO ₂	30.1	MS (1 min)	1000-fold	50	NM	[S12]
	62.4	MS	50 fald	10	10	This
re ₃ U ₄ minus	02.4	(15 s)	30-10la		10	work

MS: Magnetic separation; CS: Centrifugal separation; NM: Not mentioned; MC: Monolithic column.

References:

- [S1] X. Y. Long, Q. Song and H. Z. Lian, J. Mater. Chem. B, 2015, 3, 9330–9339.
- [S2] N. Hasan and H. F. Wu, Anal. Bioanal. Chem., 2011, 400, 3451-3462.
- [S3] L. Y. Zhang, J. Xu, L. L. Sun, J. F. Ma, K. G. Yang, Z. Liang, L. H. Zang and Y. K. Zhang, *Anal. Bioanal. Chem.*, 2011, **399**, 3399–3405.
- [S4] R. N. Ma, J. J. Hu, Z. W. Cai and H. X. Ju, Talanta, 2014, 119, 452-457.
- [S5] L. P. Li, T. Zheng, L. N. Xu, Z. Li, L. D. Sun, Z. X. Nie, Y. Bai and H. W. Liu, *Chem. Commun.*, 2013, 49, 1762–1764.
- [S6] S. T. Wang, M. Y. Wang, X. Su, B. F. Yuan and Y. Q. Feng, *Anal. Chem.*, 2012, 84: 7763–7770.
- [S7] X. S. Li, Y. N. Pan, Y. Zhao, B. F. Yuan, L. Guo and Y. Q. Feng, J. Chromatogr. A, 2013, 1315, 61–69.
- [S8] W. F. Ma, Y. Zhang, L. L. Li, L. J. You, P. Zhang, Y. T. Zhang, J. M. Li, M. Yu, J. Guo, H. J. Lu and C. C. Wang, ACS Nano, 2012, 6, 3179–3188.
- [S9] W. F. Ma, C. Zhang, Y. T. Zhang, M. Yu, J. Guo, Y. Zhang, H. J. Lu and C. C. Wang, *Langmuir*, 2014, **30**, 6602–6611.
- [S10] Y. Li, H. Q. Lin, C. H. Deng, P. Y. Yang and X. M. Zhang, *Proteomics*, 2008, 8, 238–249.
- [S11] D. W. Qi, J. Lu, C. H. Deng and X. M. Zhang, J. Chromatogr. A, 2009, 1216, 5533–5539.
- [S12] G. Cheng, Z. G. Wang, Y. L. Liu, J. L. Zhang, D. H. Sun and J. Z. Ni, ACS Appl. Mater. Interfaces, 2013, 5, 3182–3190.