Supplementary Information

2

- 3 Solution-Processed MoS₂ Nanotubes/Reduce Graphene
- 4 Oxide Nanocomposite as an Active Electrocatalyst toward
- 5 Hydrogen Evolution Reaction
- 6
- 7

- 1 Supplementary Figures and Tables.
- 2

- 4 Fig. S1. SEM images of typical commercial Bulk MoS_2 (BM). The scale bars are 10 μ m and 1 μ m,
- 5 respectively.

2 Fig. S2. XRD patterns of rGO, BM, BM@rGO, MNTs and MNTs@rGO.

1 For MNTs@rGO hybrids, all the characteristic diffraction peaks of MNTs can be 2 observed, while the absence of peaks at low-angle region indicates that the MoS_2 3 nanosheets are not restacked, which is beneficial for the exposure of electrocatalytic 4 active sites. Moreover, the absence of diffraction peaks for rGO in the composites 5 may be ascribed to the relative low content of rGO and the relatively higher intensity 6 of the diffraction peaks for MNTs.

8

9 Fig. S3. The polarization curves of MNTs@rGO at different loading weight.

10

1 Table S1. Comparison of the electrocatalytic activity of MNTs@rGO to some

2 representative MoS₂-based HER catalysts reported in the literature.

3					
Sample	Onset Potential (mV vs. RHE)	Tafel Slope (mV dec ⁻¹)	η (mV vs. RHE) for $J = -10$ mA cm ⁻²	Catalyst loading (μg cm ⁻²)	Ref.
MoS ₂ composite (nanosheets & quantum dots)	-120	69	~ 250	35.7	S 1
2D MoS_2 nanosheets	-80	90	~ 210	571	S2
Pd coated MoS ₂ nanoflowers	-218	39	-	3538	S3
MoS ₂ nanoflowers@rGO	-190	95	285	-	S4
Defect-rich MoS ₂	-120	50	180	285	S5
Nanoporous MoS ₂	~ -150	50	270	60	S6
MoS ₃ nanoparticles	-150	41-63	260	32	S7
MoO ₃ -MoS ₂ core-shell nanowires	-150	50-60	250	60	S 8
MoS ₂ @carbon paper	-200	120	-	-	S9
Supported [Mo ₃ S ₄] ⁴⁺	-200	120	280	-	S10
Graphene nanoribbon- supported MoS ₂ nanosheets	-110	43.4	180	285	S 11
S-doped carbon modified MoS ₂ nanosheets	-60	72	~ 180	-	S12
MoS ₂ quantum dots interspersed in MoS ₂ sheets	-190	74	-	-	S13
MNTs@rGO	-180	69	250	102	This work

1 Double layer capacitance (C_{dl}) calculations.

3 Fig. S4. CV curves of MNTs@rGO (a) and BM@rGO (b) at different scan rates in the potential
4 region of 0.15–0.25 V vs. RHE, respectively.

5

6 To estimate the effective active surface area of the MNTs@rGO and BM@rGO, the 7 CV curves were performed at a series of scan rates (20, 40, 60, 80, 100, 120, 140, 160, 8 180 and 200 mV s⁻¹) in the potential range of 0.15–0.25 V vs. RHE, which was 9 considered as the double layer capacitance (C_{dl}) behavior. The C_{dl} values of 10 MNTs@rGO and BM@rGO were estimated by plotting the ΔJ (J_{anodic} - $J_{cathodic}$) at 0.2 11 V vs. RHE against the scan rate, where the slope of the resulting curve was twice of 12 the C_{dl} (Fig. 4e).^{S11}

1 Turnover frequency (TOF) calculations.

2 The TOF value is calculated from the equation: ^{\$15}

3 TOF = $(J^*A) / (2^*F^*n)$

4 where J is the current density at a given overpotential, A is the surface area of the electrode, the number 2 means two electrons are required to form one hydrogen 5 molecule from two protons, F is the Faraday constant and M is the number of moles 6 of sulfide atoms on the electrode. It must be noted that this TOF estimate assumes that 7 8 all of the S atoms present in the material are catalytically active. However, only the edges of the MoS₂ are identified as the active sites for the HER reactions, where the 9 unsaturated S atoms are exposed and can absorb protons with a small free energy.^{S16} 10 The vast majority of the S atoms in the nanotubes are expected to play a purely 11 structural role, which results in a gross overestimate of the real number of active sites. 12 Thus, we can conclude that the calculated TOFs only represented the lower limit. 13

1 Table S2. Fit parameters of EIS spectra measured at different η values for

2 MNTs@rGO modified electrode

3

η (mV)	$R_{\rm ct}\left(\Omega\right)$	$R_{\rm m}\left(\Omega\right)$	$C_{\text{int}}(\mathbf{F})$	$ au_{ m ct} (\Omega^{1/2} { m F}^{1/2})$	$ au_{ m m} \left(\Omega^{1/2} \ { m F}^{1/2} ight)$
150	273.3	6.311	0.00697	1.90534	0.044
160	182	6.168	0.00691	1.25758	0.04262
170	125.6	5.871	0.00684	0.85861	0.04013
180	88.19	5.541	0.00676	0.59616	0.03746
190	62.11	5.297	0.0067	0.41632	0.03551
200	44.6	4.843	0.00667	0.29733	0.03229
210	32.74	4.682	0.00656	0.21484	0.03072
220	24.48	4.415	0.00649	0.15888	0.02866
230	18.85	4.18	0.0064	0.12057	0.02674
240	14.35	3.917	0.00644	0.09235	0.02521
250	11.14	3.757	0.0064	0.07126	0.02403
260	8.99	3.41	0.00659	0.05922	0.02246

1 Table S3. Fit parameters of EIS spectra measured at different η values for

2 BM@rGO modified electrode

3

η (mV)	$R_{\rm ct}\left(\Omega ight)$	$R_{\rm m}\left(\Omega\right)$	$C_{\rm int}$ (F)	$ au_{ m ct}(\Omega^{1/2}{ m F}^{1/2})$	$ au_{ m m}\left(\Omega^{1/2}~{ m F}^{1/2} ight)$
230	3269	7.907	0.00125	4.0771	0.00986
240	3054	7.999	0.00121	3.70145	0.00969
250	1860	7.721	0.00128	2.37522	0.00986
260	2358	8.008	0.00119	2.79871	0.0095
270	1845	8.042	0.00117	2.16123	0.00942
280	1696	8.205	0.00114	1.93853	0.00938
290	1496	8.274	0.00113	1.6836	0.00931
300	1385	8.465	0.0011	1.52392	0.00931
310	1234	9.015	0.00105	1.32556	0.00945
320	1219	9.533	0.00101	1.22826	0.00961
330	1155	10.09	0.00097	1.12235	0.0098
340	975.4	10.9	0.00093	0.90849	0.01015

4

- **1** References to Supplementary Information
- 2 S1. S. Xu, D. Li and P. Wu, Adv. Funct. Mater., 2015, 25, 1127.
- 3 S2. S. Muralikrishna, K. Manjunath, D. Samrat, V. Reddy, T. Ramakrishnappa and
- 4 D.H. Nagaraju, RSC Adv., 2015, 5, 89389.
- 5 S3. B. B. Li, S. Z. Qiao, X. R. Zheng, X. J. Yang, Z. D. Cui, S. L. Zhu, Z. Y. Li and Y.
- 6 Q. Liang, J. Power Sources, 2015, 284, 68.
- 7 S4. C. B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X. J. Wu, Z. Luo, J. Wei, H. L. Zhang
- 8 and H. Zhang, *Nanoscale*, 2014, **6**, 5624.
- 9 S5. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. (David) Lou
- 10 and Y. Xie, Adv. Mater., 2013, 25, 5807.
- 11 S6. J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo, *Nature Mater.*, 2012,
- 12 **11**, 963.
- 13 S7. H. Vrubel, D. Merki and X. Hu, *Energy Environ. Sci.*, 2012, 5, 6136.
- 14 S8. Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara and T. F.
- 15 Jaramillo, Nano Lett., 2011, 11, 4168.
- 16 S9. J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nórskov and I. Chorkendorff,
- 17 Faraday Discuss., 2008, **140**, 219.
- 18 S10. T. F. Jaramillo, J. Bonde, J. Zhang, B. L. Ooi, K. Andersson, J. Ulstrup and I.
 19 Chorkendorff, *J. Phys. Chem. C*, 2008, **112**, 17492.
- 1) Chomendorn, 0: 1 10/0: Chom: C, 2000, 112, 1 + 1/2.
- 20 S11. Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi and L. Qu, *Angew. Chem.*21 *Int. Ed.*, 2014, 53, 13934.
- 22 S12. H. Gu, L. Zhang, Y. Huang, Y. Zhang, W. Fan and T. Liu. *RSC Adv.*, 2016, 6,
 23 13757.
- S13. T.N. Kumar, N. Chandrasekaran and K. L. Phani, *Chem. Commun.*, 2015, 51,
 5052.
- 26 S14. D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano, 2014, 8, 5297.
- 27 S15. D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chem. Sci., 2012, 3, 2515.
- 28 S16. Y. Yan, B. Xia, Z. Xu, X. Wang, ACS. Catal., 2014, 4, 1693.