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Experimental 

General Comments. All reagents were purchased from commercial suppliers and used without further 

purification. [NBu4]3[PO4{WO(O2)2}4]1 and 1-(4-vinylbenzyl)-1H-imidazole2 were prepared as previously 

described and H3[PO4{WO(O2)}4] was generated in situ immediately prior to use as previously 

described.3 1H and 13C{1H} NMR spectra were recorded on JEOL LAMBDA-500 or ECS-400 instruments. 

Solid-state 31P spectra were recorded at 161.87 MHz using a Varian VNMRS 400 spectrometer and a 4 

mm (rotor o.d.) magic-angle spinning probe. They were obtained using cross-polarization with a 2 s 

recycle delay, 3 ms contact time, at ambient probe temperature (~25 °C) and at a sample spin-rate of 10 

kHz. Between 1000 and 3600 repetitions were accumulated.  Spectral referencing was with respect to 

an external sample of 85% phosphoric acid 85%. Solid-state 13C spectra were recorded at 100.562 MHz 

using a Varian VNMRS 400 spectrometer. They were obtained using cross-polarization with a 10 s 

recycle delay, 1 ms contact time, at ambient probe temperature (~25 °C) and at a sample spin-rate of 6 

kHz. Spectral referencing was with respect to an external sample of neat tetramethylsilane (carried out 

by setting the high-frequency signal from adamantane to 38.5 ppm). Thermogravimetric analysis (TGA) 

was performed using a TA TGA Q5000, at a heating rate of 10 °C min-1. All samples were sealed in the 

glovebox into aluminium pans. The onset of the weight loss in each thermogram was used as a measure 

of the decomposition temperature. Gel permeation chromatography (GPC) was conducted on a Varian 

ProStar instrument (Varian Inc.) equipped with a Varian 325 UV-vis dual wavelength detector (254 nm), 

a Dawn Heleos II multi-angle laser light scattering detector (Wyatt Technology Corp.), a Viscotek 3580 

differential RI detector, and a pair of PL gel 5 μm Mixed D 300 × 7.5 mm columns with guard column 

(Polymer Laboratories Inc.) in series. Near monodisperse polystyrene standards (Agilent Technologies) 

were used for calibration. Data collection was performed with Galaxie software (Varian Inc.) and 

chromatograms analysed with the Cirrus software (Varian Inc.) and Astra software (Wyatt Technology 

Corp.). SEM images were acquired on a Tescan Vega 3LMU scanning electron microscope with digital 

image collection. XPS measurements were carried out using a Theta Probe system (Thermo Scientific, 

UK) equipped with a microfocused monochromatic AlK sourece. The X-ray source a soperated at 100 

W and 15 kV. Flow reactions were performed using a Uniqsis FlowSyn Maxi all stainless steel platform 

with mandrels supplied by Uniqsis.  
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Synthesis of 3-benzyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium bromide (1a).

1-(4-Vinylbenzyl)-1H-imidazole (5.94 g, 32.2 mmol) was dissolved in MeCN (30 mL) and stirred. Benzyl 

bromide (11.5 mL, 96.7 mmol) was added and the reaction mixture was 

stirred for 18 hours. The reaction mixture was added drop-wise in to Et2O 

(400 mL) while stirring rapidly upon which a white precipitate formed. The 

solvent was decanted off and the product was dissolved in MeCN (30 mL). The solvent was removed 

under reduced pressure to give the benzylated imidazole 30 as a white foam (11.33 g, 99%). 1H NMR 

(400 MHz, CDCl3, δ): 10.81 (s, 1H, N-CH-N), 7.39 (m, 9H, Ar-H, N-CH=CH-N), 7.22 (m, 2H, Ar-H meta to 

vinyl), 6.64 (dd, J = 17.6, 10.9 Hz, 1H, HaC=CHbHc), 5.72 (d, J = 17.5 Hz, 1H, HaC=CHbHc), 5.52 (s, 4H, Ar-

CH2-N), 5.27 (d, J = 10.9 Hz, 1H, HaC=CHbHc); 13C NMR (100 MHz, CDCl3, δ): 138.9, 137.2, 135.8, 132.8, 

132.1, 129.7, 129.6, 129.4, 129.1, 127.3, 121.9, 115.6, 53.6, 53.3; FT-IR (neat, cm-1):  =  3424, 3122, 

3051, 2967, 2847, 1556, 1149, 914, 716. HRMS (ESI+) exact mass calculated for C19H20N2 [M+H]+ m/z = 

276.1626, found m/z = 276.1627; Anal. Calc. for C19H19BrN2 (355.3): C, 64.23; H, 5.39; N, 7.89%. Found: 

C, 64.69; H, 5.66; N, 8.09%.

Synthesis of 1,2-dimethyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1b).

A flame dried three-neck round bottomed flask was charged with 1,2-dimethylimidazole (5.81 g, 60.5 

mmol) and dry chloroform (50 mL). 4-Vinylbenzyl chloride (11.1 mL, 78.6 

mmol) was added and the reaction mixture was heated to 50 oC and stirred 

for 18 hours. After this time, the solvent was removed under reduced 

pressure and the resulting residue washed with ethyl acetate (4 x 50 mL). The residual solvent was 

removed under reduced pressure to afford 2c as a fine white powder (15.0 g, 100 %). 1H NMR (400 

MHz, CDCl3, δ): 7.72 (d, J = 2.1 Hz, 1H, N-CH=CH-N-CH3), 7.69 (d, J = 2.1 Hz, 1H, N-CH=CH-N-CH3), 7.36 

(d, 2H, J = 8.2 Hz, Ar-H ortho to vinyl), 7.27 (d, 2H, J = 8.2 Hz, Ar-H meta to vinyl), 6.64 (dd, J = 17.6, 10.9 

N N
Br

N N

Cl
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Hz, 1H, HaC=CHbHc), 5.72 (d, J = 17.5 Hz, 1H, HaC=CHbHc), 5.53 (s, 2H, Ar-CH2-N), 5.26 (d, J = 10.9 Hz, 1H, 

HaC=CHbHc), 3.94 (s, 3H, N-CH3), 2.75 (s, 3H, N-C(CH3)-N); 13C NMR (100 MHz, CDCl3, δ): 144.3, 138.5, 

135.8, 132.4, 128.6, 127.2, 123.0, 122.0, 115.4, 52.2, 35.9, 11.0; MP: 186-188 oC; FT-IR (neat, cm-1):  = 

3049, 3006, 2943, 1592, 1514, 1409, 1251, 1174, 826, 663; Anal. Calc. for C14H17ClN2 (248.1): C, 67.60; H, 

6.89; N, 11.26%. Found: C, 67.97; H, 7.11; N, 11.53%.

Synthesis of 1-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1c).

A flame-dried Schlenk flask was charged with 1-methylimidazole (2.6 mL, 30 mmol) in chloroform (27 

mL). 4-Vinylbenzyl chloride (5.5 mL, 39 mmol) was added and the reaction 

mixture was stirred for 18 hours at 50 °C. The solvent was removed under 

reduced pressure and the resulting residue was washed with ethyl acetate (4 x 

50 mL). The residual solvent was removed under reduced pressure to afford the imidazolium salt 1c as a 

viscous orange oil (6.71 g, 95 %). 1H NMR (400 MHz, CDCl3, δ): 10.9 (s, 1H, N-CH-N), 7.39 (dd, J = 14.8, 

8.2 Hz, 4H, Ar-H), 7.36 (m, 1H, N-CH=CH-N-CH3), 7.26 (m, 1H, N-CH=CH-N-CH3), 6.65 (dd, J = 17.6, 10.9 

Hz, 1H, HaC=CHbHc), 5.73 (d, J = 17.5 Hz, 1H, HaC=CHbHc), 5.54 (s, 2H, Ar-CH2-N), 5.27 (d, J = 10.9 Hz, 1H, 

HaC=CHbHc), 4.04 (s, 3H, Me); 13C NMR (100 MHz, CDCl3, δ): 138.6, 137.1, 135.8, 132.7, 129.3, 128.9, 

127.1, 126.6, 123.8, 122.0, 115.4, 52.9, 36.6; FT-IR (neat, cm-1):  =  3134, 3038, 2949, 2850, 1629, 1560, 

1513, 1409, 1160, 994, 913, 830, 778, 622. Anal. Calc. for C13H15ClN2 (234.7): C, 66.52; H, 6.44; N, 

11.93%. Found: C, 66.94; H, 6.79; N, 12.31%.

Poly-3-Benzyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium bromide-co-styrene (2a).

A flame-dried Schlenk flask was charged with AIBN (0.81 g, 4.9 mmol, 5 mol %) 

followed by 3-benzyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium bromide monomer 

1a (11.61 g, 32.8 mmol), styrene (6.8 mL, 66 mmol) and methanol (100 mL) 

N N

Cl

x
H

H
Ph

N N

Cl

2x
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and styrene (6.8 mL, 66 mmol) and the resulting mixture degassed with five freeze/pump/thaw 

cycles. After reaching ambient temperature the flask was heated to 70 oC and stirred for 72 

hours. After this time the solution was allowed to cool, the volume reduced by half and the 

resulting concentrate added drop-wise into diethyl ether (600 mL) with rapid stirring. The 

product was isolated by filtration, washed with Et2O (3 x 50 mL) and dried under reduced 

pressure to afford polymer 2a as a white solid (14.0 g, 76 %). 1H NMR (400 MHz, CDCl3, δ): 9.67 

(br, N-CH-N), 7.89 (br, Ar-H), 7.45 (br, Ar-H), 7.38 (br, Ar-H), 7.06 (br, Ar-H), 6.48 (br, Ar-H), 5.49 

(br, Ar-CH2-N), 5.38 (br, Ar-CH2-N), 1.47 (br, CHCH2, polymer backbone). FT-IR (neat, cm-1):  = 

3406, 3057, 3025, 2925, 2850, 1601, 1558, 1493, 1452, 1149, 759, 700; Anal. Calc. for C35H35BrN2 

(563.6): C, 74.59; H, 6.26; N, 4.97%. Found: C, 71.69; H, 6.72; N, 5.03%.

Poly-1,2-dimethyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride-co-styrene (2b).

Polymer 2b was prepared and purified according to the procedure described above for 2a and 

isolated as a white powder in 79 % yield. 1H NMR (400 MHz, CDCl3, δ): 7.75 

(br, Ar-H), 7.06 (br, Ar-H), 6.48 (br, Ar-H), 5.37 (br, Ar-CH2-N), 3.79 (br, N-CH3), 

2.56 (br, N-CHCH3-N), 1.48 (br, CHCH2, polymer backbone). FT-IR (neat, cm-1): 

 = 3290, 3026, 2923, 2850, 1587, 1536, 1513, 1493, 1452, 1034, 761, 701; 

Anal. Calc. for C30H33ClN2 (457.1): C, 78.83; H, 7.28; N, 6.13%. Found: C, 73.52; H, 6.83; N, 6.57%.

Synthesis of poly-1-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride-co-styrene (2c).

Polymer 2c was prepared and purified according to the procedure described 

above for 2a and isolated as a white powder in 59% yield. 1H NMR (400 MHz, 

CDCl3, δ): 9.51 (br, N-CH-N), 7.75 (br, Ar-H), 7.06 (br, Ar-H), 6.49 (br, Ar-H), 

5.36 (br, Ar-CH2-N), 3.87 (br, N-CH3), 1.67 (br, CHCH2, polymer backbone), 

1.42 (br, CHCH2, polymer backbone). FT-IR (neat, cm-1):  = 3343, 3142, 3056, 3025, 2924, 2849, 

x
H

H
Ph

N N

Cl

2x

x
H

H
Ph

N N

Cl

2x
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1601, 1572, 1493, 1452, 1160, 1031, 760, 700, 619; Anal. Calc. for C29H31ClN2 (443.0): C, 78.62; 

H, 7.05; N, 6.32%. Found: C, 74.65; H, 6.76; N, 6.29%. 

Synthesis of imidazole loaded Merrifield resin.[4]

A flame-dried Schlenk flask was charged with Merrifield resin (2.0 g, 2.0 mmol) (1% 

divinylbenzene crosslinked, 1.0-1.3 mmol g-1 Cl, 200- 400 mesh), imidazole (1.36 g, 20.0 mmol) 

and dry chloroform (30 mL) and the resulting mixture was heated to 50 oC and stirred for 72 

hours. After this time the reaction mixture was filtered and solid washed with chloroform (50 

mL), water (50 mL), ethanol (50 mL) and diethyl ether (50 mL) and dried under reduced pressure 

to afford the desired product as a white solid in 82% yield (1.75 g). FT-IR (neat, cm-1):  = 3059, 

3026, 2922, 2851, 1601, 1493, 1452, 1074, 1028, 755, 697; Anal. Calc. N, 2.72%. Found: C, 86.97; 

H, 8.54; N, 1.80%. 

 

Synthesis of imidazolium-decorated Merrifield resin (2e).

A flame-dried Schlenk flask was charged with imidazole loaded Merrifield resin 41 (1.65 g) and 

benzyl bromide (2.38 mL, 20.0 mmol) in dry acetonitile (20 mL) and the reaction mixture was 

allowed to stir for 72 hours. The reaction mixture was filtered and washed with MeCN (50 mL) 

and Et2O (100 mL). The solvent was removed under reduced pressure to afford the benzylated 

imidazolium Merrifield resin 2e as a white solid (1.15 g). FT-IR (neat, cm-1):  = 3059, 3025, 2922, 

2850, 1601, 1493, 1452, 1151, 1028, 756, 697; CHN Anal. Calc. based on measured loading of 

imidazole in 41 N, 2.33%. Found: C, 80.68; H, 7.97; N, 1.43%. The nitrogen content corresponds 

to an imidazolium loading of 0.51 mmol g-1. 

Synthesis of polymer supported peroxophosphotungstate 3a.
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Aqueous hydrogen peroxide solution (35% w/w, 10.2 mL, 118 mmol) was added to a solution of 

phosphotungstic acid (1.70 g, 600 µmol) in water (1 mL) 

and the resulting mixture stirred at room temperature 

for 30 minutes. After this time, a solution of 2a (1.00 g, 

1.80 mmol) in ethanol (50 mL) was added and the 

reaction mixture stirred for a further 30 minutes after which time it was added drop-wise into 

diethyl ether (500 mL) with rapid stirring. The product was isolated by filtration, washed with 

diethyl ether (3 x 50 mL) and dried under reduced pressure to afford 3a as an off white solid 

(1.00 g, 37 %). FT-IR (neat, cm-1):  = 3140, 3061, 3026, 2925, 1712, 1640, 1602, 1558, 1494, 

1453, 1148, 1029, 943, 887, 814, 756, 700; Anal. Calc. for C105H105N6O24PW4 (2601.3) C, 48.48; H, 

4.07; N, 3.23%. Found: C, 47.45; H, 4.25; N, 3.01 %; 32.3 wt% tungsten and a peroxotungstate 

loading of 0.414 mmol g-1.

Synthesis of polymer supported peroxophosphotungstate 3b.

[PO4{WO(O2)2}4]@ImPIILP 3b was prepared and purified according to the procedure described 

above for 3a and isolated as a white powder in 49 % yield. 

FT-IR (neat, cm-1):  = 3408, 3140, 3026, 2926, 1614, 1493, 

1452, 1422, 1078, 949, 820, 759, 701; Anal. Calc. for 

C90H99N6O24PW4 (2415.1) C, 44.76; H, 4.13; N, 3.48 %. 

Found: C, 41.29; H, 4.05; N, 3.38%; 33.9 wt% tungsten and a peroxotungstate loading of 0.464 

mmol g-1.

Synthesis of polymer supported peroxophosphotungstate 3c.
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[PO4{WO(O2)2}4]@ImPIILP 3c was prepared and purified 

according to the procedure described above for 3a and 

isolated as a white powder in 29 % yield. FT-IR (neat, cm-1): 

 = 3411, 3149, 3026, 2925, 1633, 1602, 1562, 1493, 1452, 1425, 1159, 1080, 1029, 956, 869, 

836, 756, 700; Anal. Calc. for C87H93N6O24PW4 (2373.0): C, 44.03; H, 3.95; N, 3.54%. Found: C, 

41.04; H, 3.99; N, 3.14%; 35.0 wt% tungsten and a peroxotungstate loading of 0.479 mmol g-1.

Synthesis of peroxophosphotungstate loaded Amberlite 3d.  

Aqueous hydrogen peroxide solution (35% w/w, 11.9 mL, 139 mmol) was added to a solution of 

phosphotungstic acid (2.00 g, 700 µmol) in water (1.2 mL) and the 

resulting mixture stirred at room temperature for 30 minutes. After 

this time, the solution was passed through a narrow sinter funnel containing Amberlite IRA 900 

chloride form (2.00 g). The Amberlite was then washed with water (50 mL) and Et2O (50 mL) and 

the solvent removed under reduced pressure to afford the functionalised Amberlite as white 

beads. FT-IR (neat, cm-1):  = 3401, 3030, 2928, 2362, 2343, 1636, 1614, 1476, 924, 885, 715; 

Found: C, 44.91; H, 7.66; N, 3.81%; 16.3 wt% tungsten and a peroxotungstate loading of 0.223 

mmol g-1.

Synthesis of polymer supported Peroxophosphotungstate loaded imidazolium-decorated 

Merrifield resin (3e).

Aqueous hydrogen peroxide solution (35% w/w, 4.5 mL, 52 mmol) was added to a solution of 

phosphotungstic acid (0.75 g, 0.30 mmol) in water 

(0.5 mL) and the mixture was stirred at room 

temperature for 30 minutes. After this time, the solution was added to a suspension of 2e (0.9 

g) in ethanol (47 mL) and the mixture was stirred for a further 30 minutes after which it was 

added drop-wise into diethyl ether (500 mL) with rapid stirring. The product was isolated by 
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filtration, washed with diethyl ether (3 x 50 mL) and finally dried under reduced pressure to 

afford 3e as a white solid (1.2 g, 73 %). FT-IR (neat, cm-1):  = 3059, 3026, 2922, 2850, 1716, 

1602, 1558, 1493, 1452, 1148, 1029, 960, 814, 755, 697; Anal. Calc. for N6O24PW4 N, 1.86%. 

Found: C, 63.46; H, 6.16; N, 0.97%; 30.2 wt% tungsten and a peroxotungstate loading of 0.413 

mmol g-1.

General procedure for catalytic sulfoxidation in batch.

A flame-dried Schlenk flask was allowed to cool to room temperature and charged with sulfide 

(1.0 mmol), catalyst (0.56-0.58 mol %) and solvent (3 mL). The reaction was initiated by the 

addition of aqueous hydrogen peroxide (35% w/w, 0.21 mL, 2.5 mmol) and allowed to stir at 

room temperature for 15 minutes. The reaction mixture was diluted with dichloromethane (25 

mL), washed with water (50 mL) and the organic extract dried over MgSO4 filtered and the 

solvent removed under reduced pressure. The resulting residue was analysed by either 1H or 

13C{1H} NMR spectroscopy to quantify the composition of starting material and products; for 

each substrate tested an internal standard of 1,3-dinitrobenzene was initially employed to 

ensure mass balance.

General procedure for the catalytic sulfoxidation recycle studies.

A PTFE centrifuge tube containing a magnetic stirrer bar was placed in a flame-dried Schlenk 

flask. The tube was charged with 3a (0.01146 mmol, 0.58 mol %), sulfide (2.0 mmol) and solvent 

(6 mL) and stirred for 2 minutes. The reaction was initiated by the addition of aqueous hydrogen 

peroxide (35% w/w, 0.43 mL, 5.0 mmol) and allowed to stir at room temperature for 5 minutes. 

After this time the solution was centrifuged (5 min, 14,000 rpm), decanted and the remaining 

PIILP catalyst washed with the reaction solvent (6 mL), re-centrifuged (5 min, 14,000 rpm) and 

the solvent decanted. The reaction solution was diluted with dichloromethane (25 mL), washed 

with water (50 mL) and the organic extract dried over MgSO4 filtered and the solvent removed 



S14

under reduced pressure. The resulting residue was analysed by 1H NMR spectroscopy to 

quantify the composition of starting material and products. The residue in the centrifuge tube 

was re-suspended in solvent and reused without any further treatment.

General procedure for the catalytic sulfoxidation kinetic studies.

A flame-dried Schlenk flask was allowed to cool to room temperature and charged with sulfide 

(4.0 mmol), 3a (0.02 mmol, 0.5 mol %) and solvent (12 mL). The reaction was initiated by the 

addition of aqueous hydrogen peroxide (35% w/w, 0.86 mL, 10.0 mmol) and the resulting 

mixture stirred at room temperature for 24 hours during which time 0.2 mL aliquots were 

removed for work-up (as above) and analysed by 1H NMR spectroscopy. 

General procedure for segmented and continuous flow catalytic sulfoxidations.

Two reservoirs were charged with sulfide (5.0 mmol) dissolved in the appropriate solvent (25 

mL, 0.2 M) and hydrogen peroxide (1.29 mL, 35%) in the same solvent (25 mL, 0.6 M). A Uniqsis 

FlowSyn reactor was used to pump 1.0 mL of each reagent at total flow rates that varied 

between 0.293 mL min−1 and 8.8 mL min−1 through a T-piece mixer to combine the two streams; 

in the case of segmented flow an additional reservoir of carrier solvent was also employed. The 

reaction stream was then flowed through a OMNIFIT® glass column reactor cartridge (10 mm id 

× 100 mm) packed with 0.1 g of [PO4{WO-(O2)2}4]@PIILP and 2.0 g of SiO2 (Geduran® Si 60) and 

mounted in a FlowSyn column heater. The exiting stream was passed through a back pressure 

regulator (BPR) and 2 mL fractions were collected into separate vials followed by a 2 mL post-

collect. Each sample was diluted with dichloromethane (10 mL), washed with water (ca. 15 mL), 

the organic extract dried over MgSO4, the solvent removed under reduced pressure and the 

resulting residue analysed by 1H NMR spectroscopy to quantify the composition of starting 

material and products.
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Characterization Data 
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Figure S1 1H NMR spectrum of 3-benzyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium bromide (1a)
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Figure S2 13C NMR spectrum of 3-benzyl-1-(4-vinylbenzyl)-1H-imidazol-3-ium bromide (1a)
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Figure S3  1H NMR spectrum of 1,2-dimethyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1b).



S19

Figure S4 13C NMR spectrum of 1,2-dimethyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1b).
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Figure S5  1H NMR spectrum of 1-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1c).
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Figure S6  13C NMR spectrum of 1-methyl-3-(4-vinylbenzyl)-1H-imidazol-3-ium chloride (1c).
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Figure S7 1H NMR spectrum of co-polymer 2a 
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Figure S8 Solid state 13C NMR spectrum of co-polymer 2a

Pairs of measurements we carried out.  One is the full CP spectrum (dipolar dephasing with 0 µs delay) and one is the edited spectrum (missing the CH and 
CH2 signals) with the 50 µs dephasing delay.  There are spinning sidebands in the spectra.  The aromatics give sidebands at 60 to 90 and 180 to 210 ppm but 
there should not be anything else in these ranges.  There are some weaker, second order, sidebands around 10 and 25 ppm as well.    



S24

Figure S9 Solid state 13C NMR spectrum of co-polymer 2a 
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Figure S10 FT-IR spectrum of co-polymer 2a 
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Figure S11 TGA and DSC curves for co-polymer 2a, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1

(a)    (b)
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Figure S12 DSC curve for co-polymer 2a. The heating rate was 10 ºC min-1
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Figure S13 SEM image of freshly prepared co-polymer 2a.
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Figure S14 Differential refractive index (dRI) GPC trace of polymer 2a in DMF  
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 Figure S15 1H NMR spectrum of co-polymer 2b
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Figure S16 Solid state 13C NMR spectrum of co-polymer 2b 

Pairs of measurements we carried out.  One is the full CP spectrum (dipolar dephasing with 0 µs delay) and one is the edited spectrum (missing the CH and 
CH2 signals) with the 50 µs dephasing delay.  There are spinning sidebands in the spectra.  The aromatics give sidebands at 60 to 90 and 180 to 210 ppm but 
there should not be anything else in these ranges.  There are some weaker, second order, sidebands around 10 and 25 ppm as well.    
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Figure S17 Solid state 13C NMR spectrum of co-polymer 2b  
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Figure S18 FT-IR spectrum of co-polymer 2b
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 Figure S19 TGA and DSC curves for co-polymer 2b, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1

(a)  (b)
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Figure S20 DSC curve for co-polymer 2b. The heating rate was 10 ºC min-
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Figure S21 SEM image of freshly prepared co-polymer 2b.
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Figure S22 Differential refractive index (dRI) GPC trace of polymer 2b in DMF 
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Figure S23 1H spectrum of co-polymer 2c
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Figure S24 Solid state 13C NMR spectrum of co-polymer 2c 

Pairs of measurements were carrid out.  One is the full CP spectrum (dipolar dephasing with 0 µs delay) and one is the edited spectrum (missing the CH and 
CH2 signals) with the 50 µs dephasing delay.  There are spinning sidebands in the spectra.  The aromatics give sidebands at 60 to 90 and 180 to 210 ppm but 
there should not be anything else in these ranges.  There are some weaker, second order, sidebands around 10 and 25 ppm as well.    
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Figure S25 Solid state 13C NMR spectrum of co-polymer 2c 
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Figure S26 FT-IR spectrm of co-polymer 2c 
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Figure S27 TGA and DSC curves for co-polymer 2c, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1

(a)   (b)
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Figure S28 DSC curve for co-polymer 2c. The heating rate was 10 ºC min-1
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Figure S29 SEM image of freshly prepared co-polymer 2c
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Figure S30 Differential refractive index (dRI) GPC trace of polymer 2c in DMF 
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Figure S31 FT-IR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3a 
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Figure S32 XPS spectra of W (4f7/2) and W (4f5/2) peaks for freshly prepared polymer-supported peroxophosphotungstate 3a
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Figure S33 Solid state 31P NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3a  
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Figure S34 Solid state 13C NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3a  
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Figure S35 TGA and DSC curves for polymer-supported peroxophosphotungstate 3a, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1
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Figure S36 DSC curve for polymer-supported peroxophosphotungstate 3a. The heating rate was 10 ºC min-1
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Figure S37 SEM images of freshly prepared polymer-supported peroxophosphotungstate 3a 
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Figure S38 FT-IR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3b 
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Figure S39 XPS spectra of W (4f7/2) and W (4f5/2) peaks for freshly prepared polymer-supported peroxophosphotungstate 3b 
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Figure S40 Solid state 31P NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3b  
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Figure S41 Solid state 13C NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3b  
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Figure S42 TGA curves for polymer-supported peroxophosphotungstate 3b, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1
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Figure S43 DSC curve for polymer-supported peroxophosphotungstate 3b. The heating rate was 10 ºC min-1



S59

Figure S44 SEM images of freshly prepared polymer-supported peroxophosphotungstate 3b 
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Figure S45 FT-IR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3c 
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Figure S46 XPS spectra of W (4f7/2) and W (4f5/2) peaks for freshly prepared polymer-supported peroxophosphotungstate 3c  
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Figure S47 Solid state 31P NMR spectrum of polymer-supported peroxophosphotungstate 3c
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Figure S48 Solid state 13C NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3c  
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Figure S49 TGA and DSC curves for polymer-supported peroxophosphotungstate 3c, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1
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Figure S50 DSC curve for polymer-supported peroxophosphotungstate 3c. The heating rate was 10 ºC min-1
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Figure S51 SEM images of freshly prepared polymer-supported peroxophosphotungstate 3c 
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Figure S52 FT-IR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3d 



S68

Figure S53 Solid state 31P NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3d  
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Figure S54 Solid state 13C NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3d  
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Figure S55 TGA and DSC curves for polymer-supported peroxophosphotungstate 3d, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1

(a)     (b)
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Figure S56 DSC curve for polymer-supported peroxophosphotungstate 3d. The heating rate was 10 ºC min-1
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Figure S57 SEM images of freshly prepared polymer-supported peroxophosphotungstate 3d 
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Figure S58 FT-IR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3e 
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Figure S59 Solid state 13C NMR spectrum of freshly prepared polymer-supported peroxophosphotungstate 3e  
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Figure S60 TGA and DSC curves for polymer-supported peroxophosphotungstate 3e, (a) wt% v time and (b) wt% v temperature. Heating rate of 10 ºC min-1

    (a) (b)
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Figure S61 DSC curve for polymer-supported peroxophosphotungstate 3e. The heating rate was 10 ºC min-1
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Figure S62 SEM images of freshly prepared polymer-supported peroxophosphotungstate 3e 
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Characterisation data for sulfoxides and sulfones 

Methyl phenyl sulfoxide.[5]] 1H NMR (400 MHz, CDCl3, δ): 7.69-7.62 (m, 2H), 7.50-7.41 (m, 2H), 7.36-

7.30 (m, 1H), 2.73 (s, 3H); 13C NMR (100.5 MHz, CDCl3, δ): 145.42, 130.95, 128.63, 123.54, 43.93; 

LRMS (EI+) m/z 163 [M+Na]+. 

Methyl phenyl sulfone.[5] 1H NMR (400 MHz, CDCl3, δ): 7.95-7.87 (m, 2H), 7.71-7.61 (m, 2H), 7.59-

7.52 (m, 1H), 3.02 (s, 3H); 13C NMR (100.5MHz, CDCl3, δ): 137.44, 133.21, 128.54, 126.23, 44.88; 

LRMS (EI+) m/z 179 [M+Na]+.

Ethyl phenyl sulfoxide.[5] 1H NMR (400 MHz, CDCl3, δ): 7.84-7.49 (m, 2H), 7.48-7.13 (m, 3H), 2.91 (q, 

1H, J = 6.61 Hz), 2.78-2.69 (q, 1H, J = 6.61 Hz), 1.23 (t, 3H, J = 6.61 Hz); 13C NMR (100.5 MHz, 

CDCl3, δ): 145.69, 131.47, 129.85, 125.42, 47.19, 10.39; LRMS (EI+) m/z 177 [M+Na]+.

Ethyl phenyl sulfone.[5] 1H NMR (400 MHz, CDCl3, δ): 7.99 (m, 2H), 7.59 (m, 3H), 3.09 (q, 2H, J = 

7.11 Hz), 1.30 (t, 3H, J = 7.11 Hz); 13C NMR (100.5MHz, CDCl3, δ): 138.31, 133.47, 128.92, 127.86, 

50.28, 7.34; LRMS (EI+) m/z 193 [M+Na]+.

Allyl phenyl sulfoxide.[5] 1H NMR (400 MHz, CDCl3, δ): 7.64-7.60 (m, 2H), 7.39-7.36 (m, 2H), 7.31-

7.26 (m, 1H), 5.44 (ddt, 1H, J = 7.11, 10.22, 17.10 Hz), 5.16 (dq, 1H, J = 1.12, 10.22 Hz), 5.01 (dq, 1H, J 

= 1.42, 17.10 Hz), 3.43 (dt, 2H, J = 7.11, 1.12 Hz); 13C NMR (100.5 MHz, CDCl3, δ): 142.13, 131.24, 

129.06, 125.09, 124.71, 117.93, 60.63; LRMS (EI+) m/z 167 [M+Na]+. 

Allyl phenyl sulfone.[5] 1H NMR (400 MHz, CDCl3, δ): 7.95-7.91 (m, 2H), 7.69-7.62 (m, 2H), 7.37-7.44 

(m, 1H), 5.63 (ddt, 1H, J = 7.19, 10.31, 17.21 Hz), 5.18 (dq, 1H, J = 1.22, 10.31 Hz), 5.02 (dq, 1H, J = 

1.48, 17.21Hz), 3.91 (dt, 2H, J = 7.19, 1.22Hz); 13C NMR (100 MHz, CDCl3, δ): 138.27, 133.74, 129.02, 

128.88, 124.63, 117.51, 60.67; LRMS (EI+) m/z 189 [M+Na]+. 
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Methyl 4-nitrophenyl sulfoxide.[6] 1H NMR (400 MHz, CDCl3, δ): 8.39 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 

7.5 Hz, 2H), 2.85 (s, 3H); 13C NMR (100 MHz, CDCl3, δ): 152.4, 150.0, 126.2, 125.8, 43.5; LRMS (EI+) 

m/z 205 [M+Na]+. 

Methyl 4-nitrophenyl sulfone.[7] 1H NMR (400 MHz, CDCl3, δ): 8.43 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 

8.8 Hz, 2H), 3.12 (s, 3H); 13C NMR (100 MHz, CDCl3, δ): 150.9, 145.9, 129.0, 124.6, 44.3. LRMS (EI+) 

m/z 224 [M+Na]+. 

Dibenzothiophene sulfoxide.[5] 1H NMR (400M Hz, CDCl3, δ): 7.98-7.91 (m, 4H), 7.75-7.71 (m, 2H), 

7.59-7.52 (m, 2H); 13C NMR (100.5 MHz, CDCl3, δ): 143.33, 132.67, 129.83, 126.37, 124.16, 123.45; 

LRMS (EI+) m/z 223 [M+Na]+. 

Dibenzothiophene sulfone.[5] 1H NMR (400 MHz, CDCl3, δ): 7.85-7.77 (m, 4H), 7.66-7.61 (m, 2H), 

7.55-7.51 (m, 2H); 13C NMR (100.5 MHz, CDCl3, δ): 137.62, 133.77, 131.53, 130.16, 121.97, 121.54; 

LRMS (EI+) m/z 239 [M+Na]+.

Homoallyl phenyl sulfoxide.[8] 1H NMR (300 MHz, CDCl3, δ): 7.75-7.55 (m, 5H), 6.04-5.90 (m, 1H), 

5.31-5.20 (m, 2H), 2.98-2.83 (m, 2H), 2.73-268 (m, 1H), 2.50-2.45 (m, 1H); 13C NMR (100 MHz, 

CDCl3, δ): 135.4, 130.4, 129.0, 124.1, 117.0, 56.2, 26.3; LRMS (EI+) m/z 203 [M+Na]+. 

Homoallyl phenyl sulfone.[9] 1H NMR (400 MHz, CDCl3, δ): 7.89-7.87 (m, 2 H), 7.65-7.62 (m, 1H), 

7.56-7.53 (m, 2 H), 5.73-5.64 (m, 1 H), 5.04-4.99 (m, 2 H), 3.15-3.11 (m, 2 H); 2.46-2.40 (m, 2H); 13C 

NMR (100 MHz, CDCl3, δ) 138.9, 133.7, 133.6, 129.2, 128.0, 117.1, 55.3, 26.7; LRMS (EI+) m/z 219 

[M+Na]+.

Benzyl phenyl sulfoxide.[5] 1H NMR (400 MHz, CDCl3, δ): 7.55-7.42 (m, 2H), 7.36-7.17 (m, 3H), 7.11-

6.63 (m, 5H), 3.98 (s, 2H); 13C NMR (100.5 MHz; CDCl3, δ): 142.59, 130.83, 130.26, 128.87, 128.57, 

128.24, 128.15, 124.21, 63.44; LRMS (EI+) m/z 239 [M+Na]+. 
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Benzyl phenyl sulfone.[5] 1H NMR (400 MHz, CDCl3, δ): 7.74-7.65 (m, 2H), 7.41-7.32 (m, 3H), 7.14-

7.06 (m, 5H), 4.41 (s, 2H); 13C NMR (100.5 MHz; CDCl3, δ): 137.49, 133.44, 130.53, 128.61, 128.47, 

128.39, 128.31, 62.53; LRMS (EI+) m/z 255 [M+Na]+.

n-Decyl methyl  sulfoxide.[10]  1H NMR (300 MHz, CDCl3, δ): 2.71 (ddd, J = 12.9, 8.7, 6.2 Hz, 1H), 2.62 

(ddd, J = 12.9, 9.0, 7.3 Hz) (s, 3H), 1.37 (s, 9H); 2.53 (s, 3H), 1.79‒1.69 (m, 2H), 1.48‒1.34 (m, 2H), 

1.31‒1.23 (m, 12H), 0.85 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz; CDCl3, δ): 54.73, 38.47, 31.80, 29.44, 

29.30, 29.21, 29,14, 28,77, 22.57, 22.50, 14.02; LRMS (EI+) m/z 227 [M+Na]+.
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Figure S63   1H NMR spectrum of the reaction mixture for the selective oxidation of thioanisole in ethanol at RT for 15 min. 
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Figure S64   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of thioanisole in ethanol at RT for 15 min 
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Figure S65 Mass Spectra for methyl phenyl sulfoxide (left) and methyl phenyl sulfone (right)

S
O O

S
O



S85

Figure S66   1H NMR spectrum of the reaction mixture for the selective oxidation of ethyl phenyl sulfide in ethanol at RT for 15 min 
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Figure S67   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of ethyl phenyl sulfide in ethanol at RT for 15 min 
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Figure S68  Mass Spectra for ethyl phenyl sulfoxide (right) and ethyl phenyl sulfone (left)
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Figure S69   1H NMR spectrum of the reaction mixture for the selective oxidation of allyl phenyl sulfide in ethanol at RT for 15 min 
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Figure S70   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of allyl phenyl sulfide in ethanol at RT for 15 min 
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Figure S71  Mass spectra for allyl phenyl sulfoxide (left) and allyl phenyl sulfone (right)  
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Figure S72   1H NMR spectrum of the reaction mixture for the selective oxidation of 4-nitrothioanisole in ethanol at RT for 15 min 
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Figure S73   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of 4-nitrothioanisole in ethanol at RT for 15 min 
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Figure S74 Mass spectra for methyl 4-nitrophenyl sulfoxide (left) and methyl 4-nitrophenyl sulfone (right)  
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Figure S75   1H NMR spectrum of the reaction mixture for the selective oxidation of dibenzothiophene in ethanol at RT for 15 min 
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Figure S76   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of dibenzothiophene in ethanol at RT for 15 min 
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Figure S77  Mass spectra for dibenzothiophene sulfoxide (left) and dibenzothiophene sulfone (right) 
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Figure S78   1H NMR spectrum of the reaction mixture for the selective oxidation of homoallyl  phenyl sulfide ethanol at RT for 15 min 
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Figure S79   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of homoallyl phenyl sulfide in ethanol at RT for 15 min.   
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Figure S80 Mass spectra for homoallyl phenyl sulfoxide (left) and homoallyl phenyl sulfone (right)  
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Figure S81   1H NMR spectrum of the reaction mixture for the selective oxidation of benzyl phenyl sulfide in ethanol at RT for 15 min 
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Figure S82   13C{1H} NMR spectrum of the reaction mixture for the selective oxidation of benzyl phenyl sulfide in ethanol at RT for 15 min 

S
O



S102

Figure S83  Mass spectra for benzyl phenyl sulfoxide (left) and benzyl phenyl sulfone (right) 
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Figure S84  1H NMR spectrum of the reaction mixture for the selective oxidation of n-decyl methyl sulfide in ethanol at RT for 15 min 
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Figure S85   13C NMR spectrum of the reaction mixture for the selective oxidation of n-decyl methyl sulfide in ethanol at RT for 15 min 
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Figure S86  Mass spectrum of n-decyl methyl sulfoxide 
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Figure S87 FT-IR Spectra of (a) fresh polymer supported peroxotungstate 3a and (b) catalyst isolated 

after the 5th run of an ethanol recycle experiment  

(a)

(b)
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Figure S88 SEM image of catalyst 3a isolated after the 5th run of an ethanol recycle experiment. 
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Figure S89 Segmented flow oxidation of thioanisole as a function of hydrogen peroxide ratio catalyzed 

by 3a. 

Conversion-selectivity profile as a function of space velocity (sv = volumetric flow rate/reactor volume) for the 
[PO4{WO(O2)2}4]@ImPIILP-catalysed sulfoxidation of thioanisole in ethanol using (a) 1.0, (b) 1.5 and (c) 2 equivalents of H2O2. 
Reaction conditions: 0.1 g catalyst/2.0 g silica, 1, 1.5 or 2 equiv. 35% H2O2, temp = 25 °C, space velocity 2.0–0.07 min-1. 
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Figure S90 Segmented flow oxidation of thioanisole as a function temperature catalyzed by 3a. 

Conversion-selectivity profile as a function of space velocity (sv = volumetric flow rate/reactor volume) for the 
[PO4{WO(O2)2}4]@ImPIILP-catalysed sulfoxidation of thioanisole in ethanol at (a) 10 °C and (b) 50 °C. Reaction conditions: 0.1 g 
catalyst/2.0 g silica, 1.5 equiv. 35% H2O2, space velocity (a) 0.2-0.017 min-1 and (b) 1.0–0.07 min-1.   



S110

Figure S91  Segmented flow [PO4{WO(O2)2}4]@ImPIILP-catalysed sulfoxidation of dibenzothiophene at 

25°C as a function of space velocity. 

Conversion-selectivity profile as a function of space velocity (sv = volumetric flow rate/reactor volume) for the 
[PO4{WO(O2)2}4]@ImPIILP-catalysed sulfoxidation of dibenzothiophene in acetonitrile. Reaction conditions: 0.1 g 
catalyst/2.0 g silica, 3 equiv. 35% H2O2, MeCN, temp = 25 ⁰C, space velocity 2.0–0.07 min-1.    


