Electronic Supplementary Information

Vertical records of sedimentary PAHs and their freely dissolved fraction in porewater profiles from the northern bays of Taihu Lake, Eastern China

Pei Lei^{a,b}, Hong Zhang^{a,*}, Baoqing Shan^a

^a State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ^b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author at: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18th Shuangqing Road, Haidian District, Beijing 100085, China. Tel.: +86 10 6284 9307; Fax: +86 10 6292 9307. E-mail address: hongzhang@rcees.ac.cn (H. Zhang)

Number of pages: 15 Number of Tables: 5 Number of Figures: 5

Lake area	Sampling sites	Longitude(E)	Latitude(N)	Sediment depth(cm)
Zhushan	ZS1 ^a	120° 2'14.4"E	31°27'04.2"N	34
Zhushan	ZS2	120° 2'29.96"E	31°25'10.12"N	12
Day (23)	ZS3	120° 1'46.32"E	31°22'51.10"N	36
Mailiana	ML1 ^a	120°11'15.12"E	31°30'14.27"N	18
Pay (ML)	ML2	120°10'23.09"E	31°27'57.61"N	4
Bay (ML)	ML3	120°10'36.57"E	31°24'51.84"N	6
Conchu Dou	GH1	120°21'48.78"E	31°25'40.92"N	10
(CH)	GH2 ^a	120°19'11.92"E	31°24'3.22"N	28
(01)	GH3	120°16'25.22"E	31°22'4.10"N	36
	CL1	120° 9'45.18"E	31°15'29.74"N	6
	CL2	120°10'53.82"E	31°19'44.38"N	24
	CL3	120° 6'34.98"E	31°18'52.73"N	6
Central lake	CL4	120° 3'58.88"E	31°15'50.75"N	8
(CL)	CL5	120° 9'24.19"E	31°11'42.15"N	16
	CL6	120°14'26.15"E	31°12'13.40"N	4
	CL7 ^a	120°14'58.76E	31°14'51.77"N	10
	CL8	120°13'46.2"E	31°18'02.3"N	16

Table S1 Sampling sites of sediment cores in the northern bays and central lake of Taihu Lake

^a The four sediment cores were chosen to analyze the temporal trends of PAHs, a duplicate sediment core was also taken to acquire porewater and corresponding overlying water.

1. Sediment core taken from the northern bay									
Nat dry waight		Do to 11 double	Linear	Linear Sediment Zhushan Bay (ZS)		Gonghu Bay (GH)			
Depth (cm)	(a)	(a am ⁻³) a	sedimentation rate	accumulation	Concentration of	Accumulation flux	Concentration of	Accumulation flux	
(g)	(g)	(g cm ³) "	(cm a ⁻¹)	rate (g cm ² a ⁻¹)	ΣPAHs (ng g ⁻¹)	of Σ PAHs (ng cm ⁻² a ⁻¹) ^b	ΣPAHs (ng g ⁻¹)	of Σ PAHs (ng cm ⁻² a ⁻¹)	
2	34.499	0.610	0.832	0.508	723	368	642	326	
4	34.194	0.605	0.681	0.412	1133	467	571	235	
6	43.106	0.763	0.594	0.453	801	363	683	310	
8	39.258	0.695	0.847	0.588	630	371	692	407	
10	44.588	0.789	0.780	0.615	1179	725	782	481	
12	41.898	0.741	0.750	0.556	1330	739	698	388	
14	50.500	0.893	0.532	0.476	1026	488	817	389	
16	52.246	0.924	0.409	0.378	1050	399	546	206	
18	48.902	0.865	0.324	0.280	722	202	469	131	
20	49.640	0.878	0.221	0.194	611	119	466	90.5	
22	55.070	0.974	0.113	0.110	683	75.1	462	50.8	
24	55.767	0.987	0.161	0.159	494	78.5	373	59.2	

Table S2 Profiles of **SPAHs** accumulation fluxs versus depth in the sediment cores from the Taihu Lake

26	57.106	1.010	0.118	0.119	424	50.4	390	46.5	
28	54.264	0.960	0.082	0.079	392	31.0	544	43.0	
2. Sediment core taken from the central part of the Lake									
	Not dry woight	Dury hulls donaits	Linear	Accumulation	the central pa	art of the Lake (CL)			
Depth (cm)	(c)	Dry bulk density	sedimentation rate	sedimentation	Concentration of	Accumulation flux			
	(g)	(g cm ²)	(cm a ⁻¹)	rate (g cm ² a ⁻¹)	ΣPAHs (ng g ⁻¹)	of Σ PAHs (ng cm ⁻² a ⁻¹)			
2	28.985	0.513	0.414	0.213	570	121			
4	33.625	0.595	0.468	0.278	456	127			
6	38.065	0.673	0.250	0.168	585	98.5			
8	45.744	0.809	0.166	0.134	634	85.2			
10	44.955	0.795	0.122	0.097	520	50.3			

^a Sediment density as dry bulk density (*BD*):

 $BD = m/v \qquad (S1)$

where BD is the bulk density, in grams per cubic centimeter (g cm⁻³),

m is the mass (net dry weight) of the sample, in grams (g), and

v is the volume of the sample, in cubic centimeters (cm³).

Sediment cores were taken by a core sampler (Corer 60, Uwitec, Austria) with length of 60 cm and inner diameter of 6 cm. The details about the composition and usage of this sediment

core sampler were shown on the website (http://www.uwitec.at/html/frame.html). The sediment cores were carefully pulled out from the cylindrical tubes after the overlying water sucked out

and then cut into sections with identical length by a supporting cutting device of the gravity corer.

Volume for a cylindrical core sample:

 $v = h [\pi d^2/4]$ (S2)

where v is the volume of the sample (cm³),

h is the height of the cylinder, in centimeters (cm),

d is the inside diameter of the cylinder (cm), and

 π is the ratio of the circumference of a circle to its diameter (non-dimensional parameter).

Every slice was assumed to a cylindrical core with the same height and area, here h = 2, d = 6 and $\pi = 3.14$, then, the volume of the sample (v) for each slice was 56.52 cm³ and this value

were used to estimate the dry bulk density.

^b The sediment accumulation rate (*SAR*) and Linear sedimentation rate (*LSR*) were calculated from ²¹⁰Pb profiles and physical properties. Based on the results of ²¹⁰Pb dating, the Σ PAHs accumulation flux (*AF*) were estimated according to

 $AF = LSR \times BD \times CN \tag{S3}$

where AF is the accumulation flux of Σ PAHs in ng cm⁻² a⁻¹,

LSR is the linear sedimentation rate in cm a^{-1} ,

BD is bulk dry density in g cm⁻³, and

CN is the concentration of sequinentary ZI Aris in ing	CN	is the	concentration	10	sedimentary	2PAHs	ın	ng	g
--	----	--------	---------------	----	-------------	-------	----	----	---

Lalza	Lastian	Description	Description Sampling Methods Range of Sediment accu		Sediment accumulation	ent accumulation rate (g cm ² a ⁻¹) Linear sedimenta		tion rate (cm a ⁻¹)	Deferences	
Lake	Location	Description	year	of dating	dating	Range	Average	Range	Average	References
Taihu Lake	near the northern bays	receiving discharges from input rivers	2014	the CRS model ^a	1900~2014	0.079~ 0.615	0.334	0.082~0.847	0.435	This study
Taihu Lake	Zhushan Bay, the northern bays	receiving discharges from input rivers	NA	the CIC model ^b	1910~2007	0.13~ 0.76	NA °	NA	NA	Shu <i>et al.</i> 2008
Taihu Lake	Meiliang Bay, the northern bays	receiving discharges from input rivers	2012	the CRS model	1865~2011	0.09~0.810	0.290	NA	NA	Mi <i>et al.</i> 2014
Taihu Lake	the central part of the Lake	open water	2014	the CRS model	1978~2014	0.097~0.278	0.178	0.122~0.468	0.284	This study
Taihu Lake	East Taihu Lake	open water	2009	the CRS model	1965~2008	0.188~0.392	0.240	NA	NA	Yao <i>et al.</i> 2012
Taihu Lake	Southern Taihu Lake	open water	NA	the CIC model	1910~2007	0.10~0.56	NA	NA	NA	Xue <i>et al.</i> 2011
Chaohu Lake	the central lake	a shallow, eutrophic lake	NA	the CIC model	1950~2005	0.106~0.241	NA	NA	0.240	Xue <i>et al.</i> 2011
Shijiuhu Lake	the central lake	river- communicating lakes	NA	the CRS model	1910~2007	0.054~0.410	NA	NA	NA	Xue <i>et al.</i> 2011
Nanyihu Lake	the eastern lake	the largest lakes in southern Anhui	NA	the CIC model	1965~2007	NA	0.250	NA	NA	Xue <i>et al.</i> 2011

Table S3 Statistics of sediment accumulation rate (SAR) or linear sedimentation rate (LSR) in the sediment cores from Taihu Lake and other lakes in the lower Yangtze River Basin

^a the CIC (constant initial concentration) model is

 $t_x = \lambda^{-1} \ln(C_0/C_x) \tag{S4}$

where *t* is the age in years,

 λ is the decay constant for ²¹⁰Pb (0.03114 a⁻¹),

x is the depth in core (cm⁻¹ or g cm⁻²),

 C_0 is the ²¹⁰Pb_{ex} (unsupported ²¹⁰Pb) activity at the sediment water interface (Bq kg⁻¹), and

 C_x is the ²¹⁰Pb_{ex} at depth x in the sedimentary section.

^b the CRS (constant initial concentration) model is:

 $t_x = \lambda^{-1} \ln(A_0/A_x) \tag{S5}$

where A_0 is the inventory of ²¹⁰Pb_{ex} in the core (Bq cm⁻²),

 A_x is the inventory of ²¹⁰Pb_{ex} below depth *x*.

^cNA, not available.

Compounds	Rings	$\log K_{ow}^{a}$	logK _{OC} ^b	Chronic toxicity ^c (μ g L ⁻¹)
Naphthalene (Nap)	2	3.37	3.08	970
Acenaphthylene (Acy)	2	4.03	3.70	180
Acenaphthene (Ace)	2	3.92	3.68	270
Fluorene (Fluo)	2	4.18	3.93	150
Phenanthrene (Phe)	3	4.57	4.21	60
Anthracene (Ant)	3	4.54	4.20	55
Fluoranthene (Flua)	3	5.18	4.68	11
Pyrene (Pyr)	4	5.22	4.61	12
Benz[a]anthracene (BaA)	4	5.91	5.37	2
Chrysene (Chry)	4	5.91	5.37	2.2
Benzo[b]fluoranthene (BbF)	4	5.8	5.82	2.9
Benzo[k]fluoranthene (BkF)	4	6.0	5.82	1.7
Benzo[a]pyrene (BaP)	5	5.91	5.67	1.5
Indeno[1,2,3- <i>c</i> , <i>d</i>]pyrene (IncdP)	5	6.75	6.26	0.13
Dibenz[<i>a</i> , <i>h</i>]anthracene (DBA)	5	6.5	6.19	0.25
Benzo[g,h,i]perylene (BghiP)	6	6.52	6.26	0.49

Table S4 Physical & chemical properties of the16 priority PAHs

^a Data were adopted from (Mackay et al. 1992).

^b Data were adopted from (Hawthorne *et al.* 2006).

^c A search of the U.S. EPA Toxicity Information Retrieval (USEPA 1997) database identified more than 300 values for the acute toxicity (median lethal concentration, LC50) of aromatic hydrocarbons to freshwater and marine invertebrates and fish. And the chronic toxicity of each PAH was estimated by dividing the acute value by an acute/chronic ratio. Acute/chronic ratios for aromatic hydrocarbons calculated from their data are between 2 and 4 (Suter and Rosen 1988). The specific value of chronic toxicity for individual PAH were adopted from (Neff *et al.* 2005).

Sampling site	Туре	Depth	Volume	DOC	
	Overlying water	/	329	7.736	
	Porewater	0-5	57.0	15.03	
	Porewater	5-10	47.0	9.080	
ZS	Porewater	10-15	42.3	11.08	
	Porewater	15-20	40.5	11.35	
	Porewater	20-25	34.8	11.67	
	Porewater	25-30	46.5	12.96	
M	Overlying water	/	1120	6.098	
ML	Porewater	0-5	49.5	18.05	
	Overlying water	/	815	9.504	
	Porewater	0-5	56.0	10.41	
CII	Porewater	5-10	48.8	6.809	
GH	Porewater	10-15	30.8	8.424	
	Porewater	15-20	31.0	7.644	
	Porewater	20-25	39.0	6.059	
	Overlying water	/	1010	4.933	
	Porewater	0-5	49	7.932	
CL	Porewater	5-10	36.5	7.552	
	Porewater	10-15	40.5	7.610	
	Porewater	15-20	26.0	6.840	

Table S5 Volumes of overlying water and porewater (mL) and concentrations of dissolved organic carbon (DOC, mg L⁻¹) at different depths (cm) of four sampling locations

Fig. S1 ²¹⁰Pb age dating of sediment cores from the northern bay and the central part of Taihu Lake.

Fig. S3 Toxic benzo[a]pyrene equivalent (TEQ^{carc}) of the seven carcinogenic PAHs in surface sediments

Fig. S4 Correlation between accumulation fluxes of Σ PAHs in the sediment core from Zhushan Bay with the economic indicators in the Changzhou City

Fig. S5 The percentage of freely dissolved PAHs in overlying water and surface porewater

References

- Hawthorne S B, Grabanski C B, Miller D J, *et al.* 2005. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K DOC values. Environmental Science & Technology, 39(8): 2795-2803.
- Mackay D, Shiu W Y, Ma K C. 1992. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Volume II: polynuclear aromatic hydrocarbons, polychlorinated dioxins, and dibenzofurans. Lewis Publishers, Boca Raton, FL. 597.
- Mi Y, Huang C C, Yang H, *et al.* 2014. Effects of human activities on sedimentary records in the Meiliang Bay of Taihu. Journal of Subtropical Resources and Environment, 9(4):26-35. (in Chinese)
- Nadal M, Schuhmacher M, Domingo J L. 2004. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132 (1):1-11.
- Neff J M, Stout S A, Gunster D G. 2005. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integrated Environmental Assessment and Management, 1(1): 22-33.
- Peters C A, Knightes C D, Brown D G. 1999. Long-Term Composition Dynamics of PAH-Containing NAPLs and Implications for Risk Assessment. Environscitechnol, 33 (24):4499-4507.
- Shu W X, Li S J, Yao S C. 2008. Sedimentary record of nutrient accumulation rates in core from Taihu Lake for recent 50 years. Marine Geology & Quaternary Geology, 28(3):67-72.(in Chinese)
- Suter G W, Rosen A E. 1988. Comparative toxicology for risk assessment of marine fishes and crustaceans. Environmental Science & Technology, 22 (5):548-556.
- Sverdrup L E, Nielsen T, Krogh P H. 2002. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environmental Science & Technology, 36 (11):2429-2435.
- USEPA (1997) Aquatic information and retrieval database. Duluth (MN): USEPA Office of Research and Development.
- Xue B, Yao S C. 2011. Recent sedimentation rates in lakes in lower Yangtze River basin. Quaternary International, 244:248-253.