Supporting Information

Tris Base Assisted Synthesis of Monodispersed Citrate-capped Gold Nanospheres with Tunable Size

Xuefei Lu, ^{a,b,‡} Anirban Dandapat,^c[‡] Youju Huang,^{*a} Lei Zhang,^a Yun Rong,^a Liwei Dai,^a Yoel Sasson,^c Jiawei Zhang,^a and Tao Chen^{*a}

^a Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China

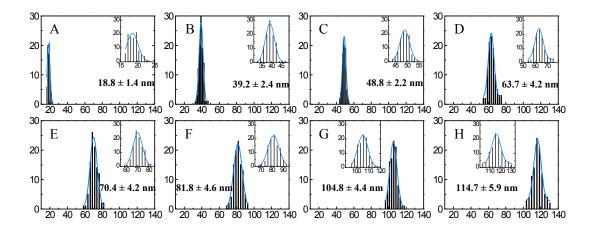
^b Department of Polymer Materials, College of Materials Science and Engineering, Shanghai

University, Nanchen Road 333, Shanghai 200444, China

° Casali Center of Applied Chemistry, Institute of Chemistry, the Hebrew University of

Jerusalem, Jerusalem 91904, Israel

‡ These authors contribute equally to this work.


^{*}Corresponding Authors: E-mail: <u>yjhuang@nimte.ac.cn</u> and <u>tao.chen@nimte.ac.cn</u>.

Sample -	Reductant		pН	Heating SC		SPR Peak	Size of Particles
	SC (mL)	TB (mL)	Value	Time (min)	Temp (°C)	- (dipolar) (nm)	(nm)
A	10	5	7.76	50	137	517	18.8
В	10	5	7.76	40		521	39.2
С	10	5	8.04	20		524	48.8
D	10	5	8.10	10		530	63.7

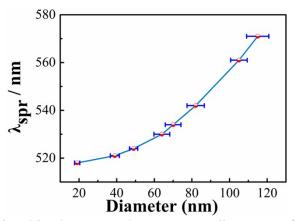
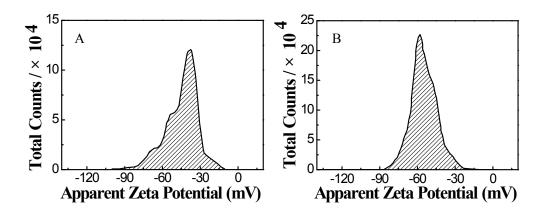
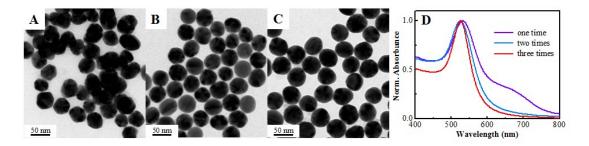

Table S1. The synthesis of AuNPs in Fig.3 using both SC and TB under different heating time.

Table S2. The synthesis of AuNPs in Fig.4 using both SC and TB under different temperatures.


Sample	Reductant		pH Heating SC		ng SC	SPR Peak	Size of
	SC (mL)	TB (mL)	Value	Time (min)	Temp (°C)	- (dipolar) (nm)	Particles (nm)
Е	10	5	8.18	5	140	534	70.4
F	10	5	8.29		130	542	81.8
G	10	5	8.30		120	561	104.8
Н	10	5	8.32		110	571	114.7


Fig. S1. The statistic diameters of AuNPs based on TEM images. Histograms A-H correspond to the sample A-H in Fig. 3 and Fig. 4, respectively. The horizontal axis represents the diameter and the vertical axis represents the amount of AuNPs. More than 100 NPs were counted in each case.

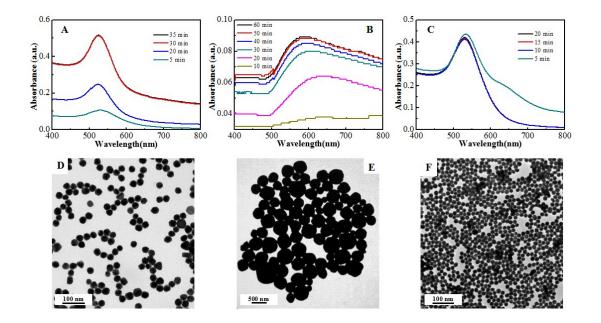

Fig. S2. The relationship between the average diameter of AuNPs and their corresponding plamonic peaks of UV-vis spectra.

Fig. S3. Zeta potential of AuNPs: (A) -45.3 mV (Table S1C) and (B) -55.2 mV (Table S2H).

Fig. S4. The SEM images and UV/vis absorption spectra (D) of AuNPs synthesized by adding one time (A), two times (B) and three times (C) HAuCl₄ solution.

Fig. S5. The UV/vis absorption spectra and corresponding TEM images of AuNPs reduced by SC (A, D), TB (B, E) and SC/TB (C, F).

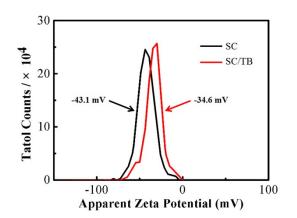
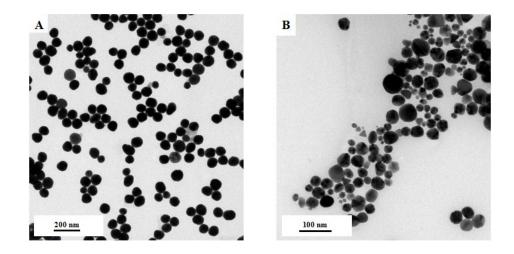



Fig. S6. Zeta potential of AuNPs synthesized by SC (black line) and SC/TB (red line).

Fig. S7. TEM images of polydispersed AuNPs synthesized by heating 1 minute at 137 °C (A) and heating 30 min at 100 °C (B).