Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Materials

Self-healing of Thermal-induced, Biocompatible and Biodegradable Protein Hydrogel

Jun Chen^a, Xiaoyu Ma^a, Qiuchen Dong^a, Donghui Song^b, Derek Hargrove^b, Sahil R. Vora^c, Anson W.K. Ma^{c,d}, Xiuling Lu^b, Yu Lei^{a,c*}

^aDepartment of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA

^b Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA

^cDepartment of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA

^dPolymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA

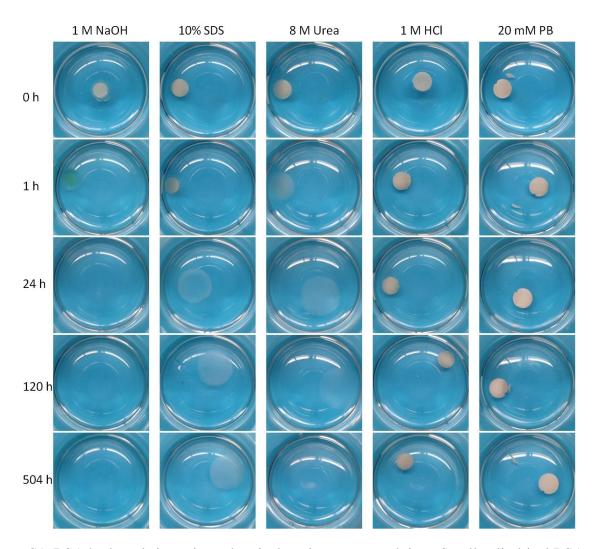


Figure S1. BSA hydrogels in various chemical environments and time. Small cylindrical BSA hydrogel disk with a diameter as 5 mm and a thickness as 2 mm was immersed into 1 M NaOH, 10% SDS, 8 M urea, 1M HCl, and 20 mM PB, respectively.

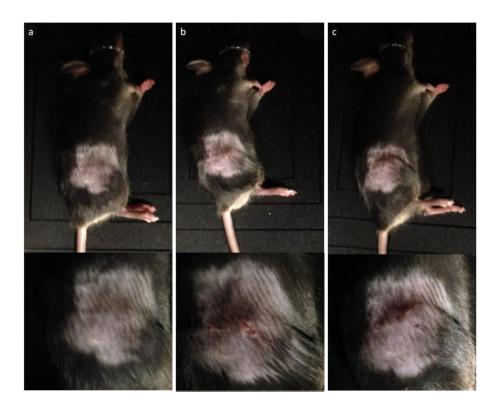


Figure S2. The histomorphormetry and inflammatory responses before (a) and immediately after (b) injection, as well as 1-day after injection (c).