Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information

for

Structural revision of aristol: a fresh look at the oxidative coupling of thymol under iodination conditions

Niko S. Radulović*, Miljana R. Đorđević and Polina D. Blagojević

Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia

Table of Contents	page
Table S1. Calculated (calc) and experimental (exp) values of chemical shifts ofselected protons of compounds 10-13 and 16	2
Table S2. List of all possible coupling products used in the QSPR study	2-3
Figure S1. ¹ H NMR shifts of polar and "aromatic" protons of compounds 7 , 10-17 given in parallel	4
Figure S2. EI Mass spectrum of 14	4
Figure S3. Spatial relationship between benzene ring shielding cones and protons placed above the plane of the ring (compounds 14 and 16)	5
Optimized geometry of compound 16	5
Figure S4. The order of elution of aristol constituents from an SiO ₂ column eluted by diethyl ether-hexane mixtures	6
Figure S5. Correlation between experimentally determined and calculated RI values according to a developed QSPR model	6
Figure S6. Partial ion current chromatograms [35-52 min] of a sample of aristol	7
Figure S7. ¹ H and ¹³ C NMR spectra of compounds 7, 10-17	8-16

^{*} Correspondence e-mail: <u>nikoradulovic@yahoo.com</u>.

Position -	10	10 11		13	16			
	δ , ppm (calc/exp)							
H2	6.64/6.57	/	6.49/6.66	/	3.86/6.09			
Н5	7.32/7.08	7.17/7.05	7.33/7.54	7.19/7.57	7.85/7.59			
H6	6.97/6.73	6.87/6.81	/	/	/			
H2′	/	/	/	/	6.55/6.61			
H5′	/	/	/	/	6.99/6.89			

Table S1. Calculated (calc) and experimental (exp) values of chemical shifts of selected protons of compounds **10-13** and **16**

Table S2. List of all possible coupling products used in the QSPR study, the predicted values of the retention indices and the corresponding QSPR variables

Compound structure	M ^a [g mol ⁻¹]	Bp ^b [°C]	MTIc	RIpred ^d	Compound structure	M [g mol ⁻¹]	Bp [°C]	MTI	RIpred
	424	445.31	8484	2666	но	424	468.09	9098	2823
	424	445.31	8524	2670		550	517.04	9570	2923
	424	445.31	8596	2678	НО СНАТА	550	517.04	9620	2929
	550	494.25	9040	2775		550	517.04	9626	2929
	550	494.25	9106	2782		424	468.09	8914	2804
	550	494.25	9156	2787		424	468.09	8920	2804
L CH	424	445.31	8618	2680		424	468.09	8976	2810
Control I	424	445.31	8646	2683		550	517.04	9430	2909
I C C C C C C C C C C C C C C C C C C C	424	445.31	8730	2692		550	517.04	9492	2915
Control of the second s	550	494.25	9168	2789		550	517.04	9498	2916
І СТАЛ	550	494.25	9284	2801		424	445.31	9506	2773

HO HO OH	424	482.17	7932	2756	424	445.31	9512	2773
I С С С С С С С С С С С С С С С С С С С	424	482.17	8188	2785	424	445.31	9528	2775
	550	531.12	8454	2864	424	445.31	9640	2787
но стран	550	531.12	8710	2891	550	494.26	10056	2882
OH OH	424	482.17	8054	2771	550	494.26	10078	2884
I CH OH	424	482.17	8066	2772	550	494.26	10084	2885
	550	531.12	8582	2877	550	494.26	10194	2896
U U U U U U U U U U U U U U U U U U U	424	468.09	9048	2817	550	517.04	9430	2897
И СОН	424	468.09	9054	2818	550	494.26	10206	2897

^aM- molar mass, ^bBp- predicted boiling points [°C], ^cMTI- molecular topological index, ^dRIpred- the predicted values of the retention indices

Figure S1. ¹H NMR shifts of polar and "aromatic" protons of compounds **7**, **10-17** given in parallel; for clarity and uniformity reasons (signals of polar protons were not sharp singlets), simulated spectra (with experimentally observed values of coupling constants and chemical shifts) are shown. Signals in the gray rectangle correspond to protons that fall within the benzene shielding cone; signals with similar values of chemical shifts are grouped within cyan rectangles.

Figure S2. EI Mass spectrum of 14

Figure S3. Spatial relationship between benzene ring shielding cones and protons placed above the plane of the ring (compound 14)

Optimized geometry (for optimization details see Experimental section) of compound 16.

Figure S4. The order of elution of aristol constituents from an SiO_2 column eluted by diethyl ether-hexane mixtures

Figure S5. Correlation between experimentally determined and calculated RI values according to equation RIpred = $116.09 + 4.07Bp + 0.10MTI - 147.55N_I$

Figure S7. ¹H and ¹³C NMR spectra of compounds 7, 10-17

¹³C NMR (100 MHz) spectrum of compound **10** in CDCl₃

 1 H NMR (400 MHz) spectrum of compound 11 in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **11** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **12** in CDCl₃

¹H NMR (400 MHz) spectrum of compound 13 in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **13** in CDCl₃

 $^1\mathrm{H}$ NMR (400 MHz) spectrum of compound 14 in CDCl_3

 ^{13}C NMR (100 MHz) spectrum of compound 14 in CDCl_3

¹H NMR (400 MHz) spectrum of compound 7 in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 7 in CDCl_3

 ^{13}C NMR (100 MHz) spectrum of compound 15 in CDCl_3

¹H NMR (400 MHz) spectrum of compound 16 in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **16** in CDCl₃

 ^1H NMR (400 MHz) spectrum of compound 17 in CDCl_3

 ^{13}C NMR (100 MHz) spectrum of compound 17 in CDCl_3