Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of $(Pb_{1-x}K_xTe)_{0.70}(PbSe)_{0.25}(PbS)_x$

Dianta Ginting^a, Chan-Chieh Lin^a, Byung-Kyu Yu^b, Sung-Jin Kim^b, Rabih Al rahal Al Orabi^c, and Jong-Soo Rhyee^{a,*}

^aDepartment of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yong-In 17104, Korea

^bDepartment of Chemistry and Nano Science, Ewha Womans Univeristy, Seoul 03760, Korea

^cDepartment of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Korea.

*Corresponding author: jsrhyee@khu.ac.kr

Fig. S1. Comparative temperature-dependent thermal conductivity (a) and lattice thermal conductivity (b) of the compounds as indicated.

Fig. S2. Theoretical calculation of lattice thermal conductivity κ_L of the Callaway's alloy model (red dashed line) and experimental lattice thermal conductivity of Pb_{0.98}K_{0.02}Te, (Pb_{1-x}K_xTe)_{0.70}(PbSe)_{0.25}(PbS)_{0.05} (x = 0.02 and 0.25), and (Pb_{0.98}K_{0.02}Te)_{1-x}(PbSe)_x [27] with respect to Se concentration.

Fig. S3. Comparative temperature-dependent *ZT* values of $Pb_{0.98}K_{0.02}Te$, $(Pb_{1-x}K_xTe)_{0.70}(PbSe)_{0.25}(PbS)_{0.05}$ (x = 0.02 and 0.25), and $(Pb_{0.98}K_{0.02}Te)_{1-x}(PbSe)_x$ [27].

Fig. S3. Comparative engineering $(ZT)_{eng}$ (a) and efficiency η (b) in terms of temperature difference ΔT at $T_c = 300$ K for various compounds as indicated.