Supporting Information For

Copper and triphenylphosphine-promoted sulfenylation of quinones with arylsulfonyl chlorides

Xiaoli Yu, Qiujin Wu, Huida Wan, Zhaojun Xu, Xingle Xu and Dawei Wang*

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.

wangdw@jiangnan.edu.cn

Table of contents

1. General Information	S2
2. Details of experimental procedures	S2
2.1. Typical procedure for the synthesis of quinones and arylsulfonyl chlorides	S2
2.2. ¹ H and ¹³ CNMR spectra of compounds	S2
3. Copies of NMR spectra	S7

1. General Information

Copper iodide, triphenylphosphine phosphine and other chemicals were obtained from commercial resource and used without further purification. All solvents were dried and purified by known procedures and freshly distilled under nitrogen from appropriate drying agents prior to use. The products were isolated by column chromatography on silica gel (200-300 mesh or 100-200 mesh) by using petroleum ether (60-90 °C) and ethyl acetate as eluents. Silica gel for column chromatography was purchased from Qingdao Haiyang Chemical Co., Lt. All yields described herein are the isolated yields after column chromatography. Reaction progress and product mixtures were routinely monitored by TLC using TLC SiO₂ sheets, and compounds were visualized under ultraviolet light. ¹H-NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer. ¹H-NMR chemical shifts are referenced to tetramethylsilane (TMS) (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m). HRMS were recorded on Thermo Scientific LTQ Orbitrap XL spectrometer equipped with an ESI source.

2. Details of experimental procedures

2.1. Typical procedure for the synthesis of quinones and arylsulfonyl chlorides:

The mixture of quinone (1a) (1.0 mmol), benzenesulfonyl chloride (2a) (2.5 mmol), CuI (10 mol%), PPh₃ (2.5 mmol) and K₃PO₄ (1.5 mmol) in toluene (5 mL) was stirred at 120 °C under air for 10 h. Upon completion, the reaction mixture was removed the solvents to give the residue. The residue was then purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 15:1) to provide the corresponding product as yellow solid **4a**.

2.2. ¹H and ¹³CNMR spectra of compounds

2-(*p***-tolylthio)cyclohexa-2,5-diene-1,4-dione (4a).** (Known compound, ref: S. H. Kim, E. A. Theodorakis, *Sci of Synt.* 2006, **28**, 53-69), ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.9 Hz, 2 H), 7.29 (d, *J* = 7.9 Hz, 2 H), 6.82 (d, *J* = 10.0 Hz, 1 H), 6.68 (dd, *J* = 10.0, 2.4 Hz, 1 H), 5.89 (d, *J* = 2.4 Hz, 1 H), 2.42 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.0, 154.9, 141.1, 137.4, 135.9, 135.5, 131.2, 125.8, 123.2, 21.3.

2-(phenylthio)cyclohexa-2,5-diene-1,4-dione (4b). (Known compound, ref: V. K. Tandon, H. K. Maurya, *Tetrahedron Lett.* 2009, **50**, 5896-5902.), ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 5 H), 6.85 (d, *J* = 10.0, 0.8 Hz, 1 H), 6.71 (ddd, *J* = 10.0, 2.4, 0.8 Hz, 1 H), 5.91 (dd, *J* = 2.4, 0.8 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.4 183.9, 154.5, 137.5, 135.9, 135.6, 130.6, 130.4, 126.0, 125.9.

2-((4-ethylphenyl)thio)cyclohexa-2,5-diene-1,4-dione (4c). (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.0 Hz, 2 H), 7.32 (t, *J* = 7.2 Hz, 2 H), 6.82 (dd, *J* = 10.0, 0.8 Hz, 1 H), 6.67 (ddd, *J* = 10.0, 2.4, 0.8 Hz, 1 H), 5.90 (dd, *J* = 2.4, 0.9 Hz, 1 H), 2.71 (q, *J* = 7.6 Hz, 2 H), 1.31 – 1.24 (t, *J* = 7.6 Hz, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.0, 154.9, 147.2, 137.4, 135.9, 135.5, 130.0, 125.8, 123.4, 28.7, 15.2.

2-(m-tolylthio)cyclohexa-2,5-diene-1,4-dione (4d). (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 1 H), 7.33 – 7.30 (m, 3 H), 6.86 (d, *J* = 10.0 Hz, 1 H), 6.69 (dd, *J* = 10.0, 2.4 Hz, 1 H), 5.92 (d, *J* = 2.5 Hz, 1 H), 2.41 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.0, 154.7, 140.5, 137.5, 136.0, 135.9 132.6, 131.4, 130.2, 126.5, 125.9, 21.3.

2-((4-fluorophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4e). (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2 H), 7.25 – 7.18 (t, *J* = 8.6 Hz, 2 H), 6.85 (d, *J* = 10.1 Hz, 1 H), 6.71 (dd, *J* = 10.0, 2.4 Hz, 1 H), 5.87 (d, *J* = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 183.8, 165.4, 162.9, 154.3, 137.79 (d, *J* = 8.8 Hz), 137.5, 135.9, 125.9, 124.5, 124.0, 122.15 (d, *J* = 3.6 Hz), 119.1, 117.89 (d, *J* = 22.2 Hz).

2-((4-chlorophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4f). (Known compound, ref: Uemura, Akio and Shirai, Masashi.; *Jpn. Kokai Tokkyo Koho*, 2011, 2011116749, 16 Jun.), ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.42 (m, 4 H), 6.83 (d, *J* = 10.1 Hz, 1 H), 6.70 (dd, *J* = 10.1, 2.4 Hz, 1 H), 5.87 (d, *J* = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 183.7, 153.9, 137.5, 137.3, 136.9, 135.8, 130.7, 126.0, 125.4.

2-((4-bromophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4g). (Known compound, ref: D.. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.71(m, J = 6.9, 1.6 Hz, 2 H), 7.37 (dd, J = 7.0, 1.4 Hz, 2 H), 6.87 – 6.78 (m, 1 H), 6.69 (ddd, J = 10.1, 2.4, 1.2 Hz, 1 H), 5.87 (dd, J = 2.4, 1.2 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 183.7, 153.7, 137.5, 137.1, 135.8, 133.7, 126.0, 125.6.

2-((2-bromophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4h). (Known compound, ref: Uemura, Akio and Shirai, Masashi, *Jpn. Kokai Tokkyo Koho*, 2011, 2011116749, 16 Jun.), ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 7.8, 1.5 Hz, 1 H), 7.64 (dd, *J* = 7.5, 1.8 Hz, 1 H), 7.46 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.41 (td, *J* = 7.6, 1.6 Hz, 1 H), 6.89 (d, *J* = 10.0 Hz, 1 H), 6.72 (dd, *J* = 10.0, 2.4 Hz, 1 H), 5.79 (d, *J* = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 183.8, 151.7, 137.8, 137.5, 135.9, 134.6, 132.3, 130.7, 129.1, 128.4, 126.0.

2-((3-chlorophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4i). (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2 H), 7.47 (d, *J* = 7.6 Hz, 1 H), 7.43 – 7.39 (m, 1 H), 6.86 (d, *J* = 10.0 Hz, 1 H), 6.75 – 6.69 (dd, *J* = 10.0, 2.4 Hz, 1 H), 5.92 (d, *J* = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 183.6 153.7, 137.5, 136.0, 135.8, 135.3, 133.8, 131.4, 130.9, 128.8, 126.1.

2-((2,6-dichlorophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4j). (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.8 Hz, 2 H), 7.41 (dd, J = 8.8, 7.3 Hz, 1 H), 6.87 (d, J = 10.1 Hz, 1 H), 6.72 (dd, J = 10.1, 2.4 Hz, 1 H), 5.72 (d, J = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 183.6, 149.6, 141.7, 137.6, 136.0, 132.50 (s), 129.5, 126.0, 125.4.

2-((2-fluorophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4k). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 2 H), 7.30 (dd, J = 7.6, 1.2 Hz, 1 H), 7.27 (dd, J = 5.5, 5.0 Hz, 1 H), 6.86 (d, J = 10.1 Hz, 1 H), 6.72 (dd, J = 10.1, 2.4 Hz, 1 H), 5.91 (dd, J = 2.4, 1.2 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 183.8, 164.0, 161.5, 151.8, 137.4 (d, J = 12.0 Hz), 135.9, 133.4 (d, J = 8.1 Hz), 126.1, 125.81 (d, J = 4.0 Hz), 117.2 (d, J = 22.3 Hz), 114.2 (d, J = 18.5 Hz). HRMS Calculated for C₁₂H₈FO₂S [M+H]⁺ 235.0229, found 235.0226.

2-((4-(*tert***-butyl)phenyl)thio)cyclohexa-2,5-diene-1,4-dione (4l).** (Known compound, ref: D. Wang, X. Yu, W. Yao, W.. Hu, C. Ge, and X. Shi, *Chem. Eur. J.* 2016, **22**, 8863-8868) ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 2 H), 7.46 – 7.40 (m, 2 H), 6.84 (d, *J* = 10.0 Hz, 1 H), 6.70 (dd, *J* = 10.0, 2.5 Hz, 1 H), 5.96 (d, *J* = 2.5 Hz, 1 H), 1.36 (s, 9 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 184.1, 154.8, 154.1, 137.5, 135.9, 135.3, 127.5, 125.8, 123.2, 34.94, 31.2.

2-((4-methoxyphenyl)thio)cyclohexa-2,5-diene-1,4-dione (4m). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2 H), 7.05 – 6.98 (m, 2 H), 6.83 (d, J = 10.0 Hz, 1 H), 6.69 (dd, J = 10.0, 2.5 Hz, 1 H), 5.88 (d, J = 2.5 Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.2, 161.5, 155.3, 137.5, 137.1, 135.9, 125.8, 117.0, 116.0, 55.5. HRMS Calculated for C₁₃H₁₁O₃S [M+H]⁺ 247.0429, found 247.0428.

2-((3-methoxyphenyl)thio)cyclohexa-2,5-diene-1,4-dione (4n). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 1 H), 7.13 – 7.02 (m, 3 H), 6.84 (d, *J* = 10.0 Hz, 1 H), 6.70 (dd, *J* = 10.0, 2.5 Hz, 1 H), 5.96 (d, *J* = 2.5 Hz, 1 H), 3.84 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.0, 160.8, 154.4, 137.5, 135.9, 131.2, 127.7, 127.6, 126.0, 120.6, 116.5, 55.5. HRMS Calculated for C₁₃H₁₁O₃S [M+H]⁺ 247.0429, found 247.0429.

2-((2-methoxyphenyl)thio)cyclohexa-2,5-diene-1,4-dione (40). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dtd, J = 9.0, 7.4, 1.7 Hz, 2 H), 7.09 – 7.00 (m, 2 H), 6.83 (d, J = 10.0 Hz, 1 H), 6.69 (dd, J = 10.0, 2.5 Hz, 1 H), 5.84 (d, J = 2.5 Hz, 1 H), 3.87 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 184.3, 159.9, 152.5, 137.4, 137.3, 136.0, 132.9, 125.6, 122.0, 114.2, 112.0, 56.0. HRMS Calculated for C₁₃H₁₁O₃S [M+H]⁺ 247.0429, found 247.0426.

2-((3,4-dimethoxyphenyl)thio)cyclohexa-2,5-diene-1,4-dione (4p). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dd, J = 8.3, 2.1 Hz, 1 H), 7.00 – 6.93 (m, 2 H), 6.84 (d, J = 10.0 Hz, 1 H), 6.70 (dd, J = 10.0, 2.5 Hz, 1 H), 5.92 (d, J = 2.5 Hz, 1 H), 3.95 (s, 3 H), 3.89 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 184.1, 155.2, 151.2, 150.2, 137.5, 135.9, 128.9, 125.9, 117.6, 117.1, 112.4, 56.1, 56.0. HRMS Calculated for C₁₄H₁₃O₄S [M+H]⁺ 277.0535, found 277.0538.

2-((4-nitrophenyl)thio)cyclohexa-2,5-diene-1,4-dione (4q). (Known compound, ref: M. C. Carreño , J. L. G. Ruano, A. Urbano, C. Z. Remor and Y. Arroyo, *J. Org. Chem.*, 2000, **65** (2), 453–458.) ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.28 (m, 2 H), 7.77 – 7.71 (m, 2 H), 6.90 (d, *J* = 10.1 Hz, 1 H), 6.76 (dd, *J* = 10.1, 2.4 Hz, 1 H), 5.97 (d, *J* = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.0, 183.2, 152.3, 149.0, 137.5, 136.3, 135.9, 135.7, 126.7, 125.1. HRMS Calculated for C₁₂H₈NO₄S [M+H]⁺ 262.0174, found 262.0178.

2-((4-(trifluoromethyl)phenyl)thio)cyclohexa-2,5-diene-1,4-dione (4r). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.1 Hz, 2 H), 7.68 (d, J = 8.1 Hz, 2 H), 6.88 (d, J = 10.1 Hz, 1 H), 6.73 (dd, J = 10.1, 2.4 Hz, 1 H), 5.91 (d, J = 2.4 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 183.5, 153.2, 137.5, 136.0, 135.9, 127.2(m), 126.2. HRMS Calculated for C₁₃H₈F₃O₂S [M+H]⁺ 285.0197, found 285.0194.

3. Copies of NMR spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ(ppm)

¹³C-NMR spectrum of 4b

¹³C-NMR spectrum of 4c

¹³C-NMR spectrum of 4e

¹H-NMR spectrum of 4g

¹H-NMR spectrum of 4h

S17

¹³C-NMR spectrum of 4k

¹³C-NMR spectrum of 4n

¹³C-NMR spectrum of 40

¹³C-NMR spectrum of 4p

¹³C-NMR spectrum of 4q

¹³C-NMR spectrum of 4r

¹H-NMR spectrum of 4b

¹H-NMR spectrum of 4d

¹H-NMR spectrum of 4g

and some

12121

¹H-NMR spectrum of 4h

¹H-NMR spectrum of 4m

¹H-NMR spectrum of 4n

¹H-NMR spectrum of 40

¹H-NMR spectrum of 4p

¹H-NMR spectrum of 4q

¹H-NMR spectrum of 4r