Supporting Information

Highly stable supercapacitive performance of the one-dimensional (1D) brookite TiO₂ nanoneedles

Rupesh S. Devan^{a,b,c*}, Yuan-Ron Ma^{c*}, Ranjit A. Patil^c, and Schmidt-Mande Lukas^d

^aDepartment of Physics, Savitribai Phule Pune (Formerly, University of Pune), Pune 411007, India

^bCentre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India

^cDepartment of Physics, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C. ^dDepartment of Physics, University of Konstanz, 78457 Constance, Germany.

*Corresponding authors:

Dr. Rupesh S. Devan, Associate Professor, Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001, India. E-mail: devan rs@yahoo.co.in

Prof. Yuan-Ron Ma, Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan. E-mail:<u>ronma@mail.ndhu.edu.tw</u>

Galvanostatic charging-discharging:

The galvanostatic charging-discharging (Fig. S1,) of 1D β -TiO₂ nanoneedles was studied at various current densities of 166.7, 250, 333.3 and 416.7 μ A/g. Obviously, the charging curves were relatively symmetric to their discharge counterpart implying that a highly reversible ion transportation is efficiently taking place along the textural boundaries of 1D β -TiO₂ nanoneedles.

The specific capacitance from the galvanostatic charging-discharging was calculated using equation –

$$C_s = \frac{I}{m \cdot (dV/dt)}$$
--- (S1)

where, C_s is specific capacitance (F/g), I is the applied current (A), m is the mass of the active material (g), and dV/dt is the slope of the discharge curve (V/s). The C_s derived from the chargedischarge test (Fig. S1(b)) maintaining good linearity and gradually decreasing with increas in the current density from 166.7 to 416.7 μ A/g, since the ion accessibility is limited to the surface of the 1D β -TiO₂ nanoneedles on the relevant timescale. The C_s value of 192.2 mF/g gained at a current density of 166.7 μ A/g was decreased up to 27.6 mF/g at 417.7 μ A/g. To our knowledge, these C_s values of 1D β -TiO₂ nanoneedles are larger than those achieved by brookite TiO₂ thin films and nanostructures. These values are comparable those obtained from anatase, [1] rutile [2] and hexagonal [3] TiO₂ structures. Moreover, 1D β -TiO₂ nanoneedles showed a more rapid ion diffusion mechanism in comparison to TiO₂ nanoparticles and its multilayer film with graphene, [4] TiO₂@C core-shell nanowires, [5] and anatase to rutile transformed TiO₂ nanotubes. [6]

The energy density (*E*), power density (*P*), and coulombic efficiency (η) of the supercapacitor devices was calculated from the equations,

$$E = \frac{1}{2} \times C_s \times (\Delta V)^2 \frac{1000}{3600}$$
--- (S2)

$$P = \frac{1}{2} \times \frac{C_s \times (\Delta V)^2 \times 1000}{\Delta t_d} = \frac{E}{\Delta t} 3600$$
--- (S3)

$$\eta(\%) = \frac{\Delta t_d}{\Delta t_c} \times 100$$
 --- (S4)

where, *E* is the energy density (Wh/Kg), C_s is specific capacitance obtained from Eq. (3), ΔV is the discharge voltage range (V) on the potential window, *P* is the power density (W/Kg), η is the columbic efficiency, and Δt_d and Δt_c are discharge and charging time, respectively. The calculated energy density and power density of the 1D β -TiO₂ nanoneedles are 3.04 Wh/Kg, and 206.09 W/Kg, respectively, at a scan rate of 15 mV/s. To demonstrate the overall performance of 1D *B*-TiO₂ nanoneedles, a Ragone plot is shown in Fig. S2. A Ragone plot manifests a energy density and power density of 3.04Wh/Kg and 1683W/Kg, respectively, which is better than the previous reported for anatase TiO₂ nanotubes, [1] vertically aligned rutile TiO₂ nanorods, [2] microwave assisted graphene-TiO₂ hybrid nanostructures, [7] and hybrid supercapacitor fabricated with the carbon nanotube (CNT) cathode and TiO₂ nanowire anode. [8] The columbic efficiency of 98 % is obtained from 1D β -TiO₂ nanoneedles and is mainly attributed to the increased contributions of large surface area and textural boundaries. These results clearly demonstrate a new dimension of the 1D β -TiO₂ nanoneedles for the development of high stable supercapacitor of long cycle lifetime.

Fig. S1 Galvanostatic discharge curves of the 1D β -TiO₂ nanoneedles collected at various current densities within the limiting potential of 0 to 0.8 V. (b) The specific capacitance for various current densities calculated from discharging curves.

Fig. S2 Ragone plot derived from CV to determine the performance of the 1D β -TiO₂ nanoneedles.

Fig. S3 Figure shows selected cyclic voltammograms obtained at scan rate of 100 mV/s for number cycles from 1 to 10,000 cycles.

Fig. S4 First 50 glavanostatic charging-discharging cycles extracted out of 5,000 cycles obtained at current density of 250 μ A/g. Inset shows first five cycles.

Table 1 – The 1D β -TiO₂ nanoneedles shows better stability than the pure and hybrid metaloxide nanostructures listed in the table below.

Sr.	Electrode Materials	Capacitance	Number	Ref.
No.		reduction (%)	of cycles	No.
1.	V ₂ O ₅ nanowires	~ 50.0 %	5000	[9]
2.	NiO porous microtubes	~ 22.6 %	2000	[10]
3.	NiO nanoparticle tube	~ 48.0 %	1000	[11]
4.	Co ₃ O ₄ nanowires	~ 15.0 %	1000	[12]
5.	Co ₃ O ₄ hollow nanotube	~ 9.0 %	1000	[13]
6.	α-MnO ₃ nanobelts	~ 5.0 %	500	[14]
7.	NiO@MnO ₂ microtube	~ 18.3 %	2000	[10]
8.	Graphene $@V_2O_5$ nanobelts	~12.0 %	5000	[15]
9.	MnO ₂ nanowires/ZnO nanorods	~ 6.5 %	1000	[16]
10.	V_2O_5 doped α -Fe ₂ O ₃ nanotubes	~ 24.5 %	200	[17]

11.	Carbon coated V ₂ O ₅ nanorods	~ 24.0 %	1000	[18]
12.	V ₂ O ₅ nanoporous network	~ 24.0 %	600	[19]
13.	SnO ₂ Nanosheets	~ 58.2 %	6000	[20]
14.	Co ₃ O ₄ nanosheets	~ 31.0 %	1000	[21]
15.	Co ₃ O ₄ ultrathin nanosheets	~ 21.5 %	2000	[22]
16.	MnO ₂ nanosheets	~ 26.5 %	2000	[10]
17.	SnO ₂ @Co ₃ O ₄ core-shell nanosheets	~ 41.7 %	6000	[20]
18.	MnO ₂ nanoparticles	~ 22.8 %	1000	[23]
19.	Ni@NiO core-shell nanoparticulate tube	~ 19.0 %	1000	[11]
20.	SnO ₂ @MnO ₂ nanoparticles	~ 18.9 %	1000	[23]
21.	Ppy/GO/ZnO nanocomposite on Ni-Fome	~ 97.0 %	1000	[24]
22.	Ni(OH) ₂ /Graphene and RuO ₂ /Graphene	~ 8.0 %	5000	[15]
23.	MnO ₂ grafted V ₂ O ₅ nanostructure	~ 11.0 %	500	[26]
24.	NiO-CeO ₂ nanoparticles composites	~ 15.0 %	1000	[27]

References:

- X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, J. Y. Gan, Y. X. Tong and Y. Li, *Nano Lett.*, 2012, 12, 1690-1696.
- [2] A. Ramadoss and S. J. Kim, J. Alloy. Compd., 2013, 561, 262-267.
- [3] H. Zhou and Y. Zhang, J. Phys. Chem. C, 2014, 118, 5626-5636.
- [4] W. W. Liu, X. B. Yan and Q. J. Xue, J. Mater. Chem. C, 2013, 1, 1413-1422.
- [5] H. M. Zheng, T. Zhai, M. H. Yu, S. L. Xie, C. L. Liang, W. X. Zhao, S. C. I. Wang, Z. S. Zhang and X. H. Lu, J. Mater. Chem. C, 2013, 1, 225-229.
- [6] M. Salari, K. Konstantinov and H. K. Liu, J. Mater. Chem., 2011, 21, 5128-5133.
- [7] A. Ramadoss, and S. J. Kim *Carbon*, 2013, **63**, 434-445.
- [8] Q. Wang, Z. H. Wen and J. H. Li, Adv. Funct. Mater., 2006, 16, 2141-2146.
- [9] Z. Chen, V. Augustyn, J. Wen, Y. W. Zhang, M. Q. Shen, B. Dunn, and Y. F. Lu, Adv. Mater., 2011, 23, 791–795.
- [10] J. J. Chen, Y. Huang, C. Li, X. F. Chen, X. Zhang, Appl. Surf. Sci., 2016, 360, 534–539.
- [11] Q. Li, C. L. Liang, X. F. Lu, Y. X. Tong, and G. R. Li, J. Mater. Chem. A, 2015, 3, 6432–6439
- [12] W. W. Liu, X. Li, M. H. Zhu, X. He, J. Power Source., 2015, 282, 179-186.
- [13] M. M. Yao, Z. H. Hu, Z. J. Xu, and Y. F. Liu, J. Alloys Comp., 2015, 644, 721-728.

- [14] J. B. Jiang, J. L. Liu, S. J. Peng, D. Qian, D. M. Luo, Q. F. Wang, Z. W. Tian, and Y. C. Liu, J. Mater. Chem. A, 2013, 1, 2588-2594.
- [15] M. Lee, S. K. Balasingam, H. Y. Jeong, W. G. Hong, H. B. R. Lee, B. H. Kim, & Y. Jun, Sci. Rep., 2015, 5, 8151.
- [16] S. Z. Li, J. Wen, X. M. Mo, H. Long, H. N. Wang, J. B. Wang, G. J. Fang, J. Power Sourc., 2014, 256, 206-211.
- [17] G. D. Nie, X. F. Lu, J. Y. Lei, Z. Q. Jiang, and C. Wang, J. Mater. Chem. A, 2014, 2, 15495–15501.
- [18] B. Saravanakumar, K. K. Purushothaman, and G. Muralidharan, J. Electroanal. Chem., 2015, 758, 111-116.
- [19] B. Saravanakumar, K. K. Purushothaman, and G. Muralidharan, ACS Appl. Mater. Interfaces 2012, 4, 4484–4490.
- [20] Y. Liu, Y. Jiao, B. S. Yin, S. W. Zhang, F. Y. Qu, and X. Wu, J. Mater. Chem. A, 2015, 3, 3676-3682.
- [21] S. J. Deng, X. C. Xiao, G. Chen, L. H. Wang, Y. Wang, Electrochim. Acta, 2016, 196, 316–327.
- [22] X. H. Wang, S. W. Yao, X. X. Wu, Z. J. Shi, H. X. Sun, R. H. Que, RSC Adv., 2015, 5, 17938-17944.
- [23] Y. Q. Zhang, and Y. Mo, Electrochim. Acta, 2014, 142, 76–83.
- [24] W. K. Chee, H. N. Lim, and N. M. Huang, Int. J. Energy Res., 2015, 39, 111-119.
- [25] H. L. Wang, Y. Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue, H. J. Dai, Nano Res., 2011, 4, 729-736.
- [26] B. Saravanakumar, K. K. Purushothaman, and G. Muralidharan, Cryst. Eng. Comm., 2014, 16, 10711–10720.
- [27] N. Padmanathan, and S. Selladurai, Ionics, 2014, 20, 409–420.