Supplementary information

A Bi-functional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions from Used Baby Diapers: α-Fe₂O₃ Wrapped in P and S Dual Doped Graphitic Carbon

Hong Zhao^{a,1}, Jian Wang^{a,1}, Chi Chen^a, Dengjie Chen^a, Yang Gao^a, Mattia Saccoccio^a,

Francesco Ciucci a,b*

^a Department of Mechanical and Aerospace Engineering, The Hong Kong University

of Science and Technology, Hong Kong, SAR, China.

^b Department of Chemical and Biomolecular Engineering, The Hong Kong University

of Science and Technology, Hong Kong, SAR, China.¹

¹These authors contributed equally to this work.

^{*}Corresponding author: E-mail: francesco.ciucci@ust.hk; Tel: +852 23587187

The supporting information contains the following part:

Figure S1 A soiled baby diaper.

Figure S2 The superabsorbent polymers inside the absorbed layer of the soiled baby

diaper.

Sodium polyacrylate

Figure S3 The chemical formula of superabsorbent polymers inside baby diapers.

Figure S4 N_2 adsorption-desorption isotherm curve for (a) Fe₂O₃/P-S-GC; (b)

Fe₂O₃/GC; and (c) P-S-GC.

Figure S5 RDE test at different rotating rates for (a) P-S-GC and (b) commercial Pt/C.

The sweeping rate was set at 5 mV s⁻¹ and the electrolyte was 0.1M KOH; The Koutecky-Levich plots at different potentials are shown in the corresponding insets.

Figure S6 The structural comparison between normal C/Fe_2O_3 and carbon-wrapped

Fe₂O₃.

Sample	E [V]	E [V]	ΔE value [V]
	ORR at -3mA cm ⁻²	OER at 10 mA cm ⁻²	
Pt/C ^[1]	0.83 vs. RHE	1.85 vs. RHE	1.02
$Ir/C^{[2]}$	0.69 vs. RHE	1.61 vs. RHE	0.92
$Ru/C^{[2]}$	0.61 vs. RHE	1.62 vs. RHE	1.01
Mn oxide ^[2]	0.73 vs. RHE	1.77 vs. RHE	1.0
NiCo ₂ S ₄ @N/S-rGO ^[3]	0.76 vs. RHE	1.70 vs. RHE	1.04
$Co_3O_4/2.7Co_2MnO_4^{[4]}$	0.68 vs. RHE	1.77 vs. RHE	0.94
LN-800 ^[5]	-0.32vs. Ag/AgCl	0.70 vs. Ag/AgCl	1.09
H-Pt/CaMO ₃ ^[6]	n.a.	n.a.	1.01
Fe ₂ O ₃ /P-S-GC	0.75 vs. RHE	1.61 vs. RHE	0.86

Table S1. Assessment of catalytic bi-functionality for some reported catalysts

XPS								
Content								
Sample	C at. %	Fe at.%	O at. %	P at.%	S at.%	others at.%		
1#	31.22	22.08	36.10	0.77	2.57	7.26		
2#	35.59	20.78	35.23	0.47	1.59	6.34		
3#	36.20	20.24	30.52	1.26	3.06	8.72		
4#	39.68	19.73	28.69	1.37	4.15	6.38		
5#	30.81	21.92	36.17	0.62	2.41	8.07		
Average	34.70	20.95	33.34	0.90	2.76	7.35		

Figure S7 The comparison of ORR performance for different samples of Fe₂O₃/P-S-GC, the atomic content of which are shown in Table S2. The black line represents the average activity of the five samples, and the grey domain is the deviation region.

Table S2. The atomic contents of various samples for Fe₂O₃/P-S-GC, determined by

1700

Figure S8 The comparison of OER performance for different samples of $Fe_2O_3/P-S-GC$, the atomic content of which are shown in **Table S2**. The black line represents the average activity of the five samples, and the grey domain is the deviation region.

References

- 1. Y. Zhu, C. Su, X. Xu, W. Zhou, R. Ran and Z. Shao, J. Chem.-A Eur, 2014, 20, 15533-15542.
- 2.Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 3. Q. Liu, J. Jin, J. Y. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 5002.
- 4.D. D. Wang, X. Chen, D. G. Evans, W. S. Yang, Nanoscale 2013, 5, 5312.
- 5. W. Zhou and J. Sunarso. J. Phys. Chem. Lett. 2013, 4, 2982-29886.
- X. P. Han, F. Y. Cheng, T. R. Zhang, J. G. Yang, Y. X. Hu, J. Chen, *Adv.Mater*.
 2014, 26, 2047.