Using water-mimic organic compounds to activate guest inclusion by initially dry betacyclodextrin

Askar K. Gatiatulin,^a Marat A. Ziganshin,^a Goulshat F. Yumaeva,^a Aidar T. Gubaidullin,^b Kinga Suwińska,^{a c} Valery V. Gorbatchuk^{*a}

^a A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia

^b A. E. Arbuzov Institute of Organic and Physical Chemistry, Akad. Arbuzova, 8, 420088 Kazan, Russia

^c Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938 Warszawa, Poland

Electronic Supporting Information

Table of Contents

Equation used for calculation of formation Gibbs energy for an inclusion compound for	med in
two steps	2
Description of fitting procedure used for sorption isotherms in binary systems	2
Data of TG/DSC/MS analysis for bCD hydrates prepared at different	
humidities P/P_0 , $T=25^{\circ}C$	3
Data of TG/MS analysis for clathrates prepared by equilibration of dried bCD in binary	systems
with saturated guest vapors, $T=25^{\circ}C$	3
Data of TG/MS analysis for bCD clathrates prepared by solid-phase exchange of THF in	1 the
initial bCD•1.0THF•1.0H2O clathrate for Guest 2 at 25°C	4
Curves of simultaneous thermal analysis for bCD clathrates with HFIP, butanone,	
dichloromethane; for bCD hydrates prepared at various water activities P/P_0	4
Pictures of initial dried bCD and its samples equilibrated with saturated vapor of ethano	l and
vapors of HFIP and pyridine	9
X-ray powder diffractograms	11
Curves of thermal analysis for bCD clathrates prepared by simultaneous sorption of etha	anol and
benzene, simultaneous sorption acetonitrile and benzene; for clathrates prepared by solid	d-phase
exchange of ethanol, acetonitrile and THF	13

Equation used for calculation of formation Gibbs energy for an inclusion compound formed in two steps (ΔG_c):

$$\Delta G_c = (A_1 \cdot \Delta G_{c1} + A_2 \cdot \Delta G_{c2}) / (A_1 + A_2), \tag{S1}$$

where ΔG_{ci} is Gibbs energy of clathrate formation at *i*-th inclusion step, A_i — guest mole number sorbed in the *i*-th inclusion step.

Description of fitting procedure used for sorption isotherms in binary systems

Sorption isotherms in binary systems were fitted by minimizing a standard deviation δ of experimental points (A_{exp} , (P/P_0)_{exp}) from the isotherm calculated by equation (1) in the main text of the paper:

$$\delta = \left(\sum \left\{ \left[(P/P_0)_{\text{calc}} - (P/P_0)_{\text{exp}} \right]^2 + \left[(A_{\text{calc}} - A_{\text{exp}})/S \right]^2 \right\} / (n-2) \right)^{1/2}$$
(S2)

where P/P_0 is guest thermodynamic activity, A— guest uptake, S— stoichiometry of a saturated clathrate, n – number of experimental points. In the fitting procedure, points (A_{calc} , (P/P_0)_{calc}) are found on the calculated sorption isotherm having the shortest distances from each experimental point in normalized coordinates A /S vs. P/P_0 .

P/P_0	$\Delta m, \%$	A, mol per mol bCD	$T_{\rm max}$, °C ^b	$\Delta H_{ m dehydr}$, kJ/mol
0.10	0.7	0.5	83	51±6
0.20	3.4	2.2	81	45±4
0.25	6.7	4.5 ^{<i>a</i>}	84	49±4
0.30	8.6	6.0	92	49±3
0.33	8.7	6.0	100	47±3
0.40	10.8	7.6	109	50±3
0.50	10.1	7.1 ^{<i>a</i>}	102	47±3
0.60	11.9	8.5	110	50±2
0.70	12.5	9.0	110	51±2
0.85	12.6	9.1 ^{<i>a</i>}	112	47±2
0.90	12.4	9.0	104	48±2
1.00	15.1	11.2 ^{<i>a</i>}	145	48±2

Table S1. Data of TG/DSC/MS analysis for bCD hydrates prepared at different humidities P/P_0 , $T=25^{\circ}$ C.

^{*a*} data from Ref. 1; ^{*b*} T_{max} is determined with an error of ±4°C.

Table S2. Data of TG/MS analysis for clathrates prepared by equilibration of dried bCD in binary systems with saturated guest vapors, $T=25^{\circ}$ C.

Clathrate	$\Delta m, \%^{a}$	$T_{\max}^{\ \ b}$
bCD·4.1MeOH ^c	10.3	94
bCD·2.6 EtOH ^c	9.6 (4.3)	104; 202
bCD·2.1MeCN ^c	7.1	103
$bCD \cdot 2.0 MeNO_2$	9.8 (5.6)	84; 213
bCD·1.0(CH ₃) ₂ CO ^c	5.2	121; 225
$bCD \cdot (\sim 1.7) HFIP^{d}$	16.6 (7.9) ^e	108; >250
bCD·6.5C ₅ H ₅ N	31.0	115

^{*a*} total mass loss of guest; in brackets, mass loss is given on the second step of clathrate decomposition; ^{*b*} T_{max} is a temperature of guest peak on MS curve; ^{*c*} data from Ref. 1; ^{*d*} the guest content includes ~0.4 mol estimated from MS curve above the onset point of host thermal destruction, T_{onset} = 260°C, Figure S1; ^{*e*} Δm is mass loss below T_{onset} = 260°C.

Guest 2	Clathrate	$\Delta m, \ \%$	T_{max} (Guest2), °C	<i>T_{max}</i> (THF), °C
MeOH	bCD·2.9MeOH	7.6	95	-
<i>i</i> -PrOH	bCD·1.1 <i>i</i> -PrOH·0.2THF·1.0H ₂ O	8.1	215	217
<i>n</i> -BuOH	bCD·0.8THF·2.9H ₂ O	8.7	-	240
MeCN	bCD·2.4MeCN	7.8	111	-
THF ^b	bCD·1.2THF·0.9H ₂ O	8.2	-	241
cyclohexane	$bCD \cdot 0.9THF \cdot 1.3H_2O$	7.1	-	228

Table S3. Data of TG/MS analysis for bCD clathrates prepared by solid-phase exchange of THF in the initial bCD \cdot 1.0THF \cdot 1.0H₂O clathrate for **Guest 2** at 25°C.^{*a*}

^{*a*} Experimental procedures of THF exchange and preparation of the initial clathrate were described in Ref. 2.

 b product of additional THF inclusion by initial bCD $\cdot 1.0 THF \cdot 1.0 H_{2}O$ clathrate.

Figure S1. Curves of simultaneous TG/MS analysis for bCD·(~1.7)HFIP clathrate formed by saturation of dry bCD with HFIP vapors ($T = 25^{\circ}$ C).

Figure S2. Curves of simultaneous TG/MS analysis for bCD $\cdot 0.3C_4H_8O$ clathrate formed by saturation of dry bCD with 2-butanone vapors ($P/P_0 = 1$, $T = 25^{\circ}C$).

Figure S3. Curves of simultaneous TG/MS analysis for bCD \cdot 0.2CH₂Cl₂ clathrate formed by saturation of dry bCD with dichloromethane vapors (*P*/*P*₀ = 1, *T* = 25°C).

Figure S4. Curves of simultaneous TG/MS analysis for bCD \cdot 0.5H₂O clathrate formed by saturation of dry bCD with water vapors at activity *P*/*P*₀ = 0.10 (*T* = 25°C).

Figure S5. Curves of simultaneous TG/MS analysis for bCD \cdot 2.2H₂O clathrate formed by saturation of dry bCD with water vapors at activity *P*/*P*₀ = 0.20 (*T* = 25°C).

Figure S6. Curves of simultaneous TG/MS analysis for bCD·6.0H₂O clathrate formed by saturation of dry bCD with water vapors at activity $P/P_0 = 0.30$ ($T = 25^{\circ}$ C).

Figure S7. Curves of simultaneous TG/MS analysis for bCD·6.0H₂O clathrate formed by saturation of dry bCD with water vapors at activity $P/P_0 = 0.33$ ($T = 25^{\circ}$ C).

Figure S8. Curves of simultaneous TG/MS analysis for bCD \cdot 8.5H₂O clathrate formed by saturation of dry bCD with water vapors at activity *P*/*P*₀ = 0.60 (*T* = 25°C).

Figure S9. Curves of simultaneous TG/MS analysis for bCD·9.0H₂O clathrate formed by saturation of dry bCD with water vapors at activity $P/P_0 = 0.70$ ($T = 25^{\circ}$ C).

Figure S10. Curves of simultaneous TG/MS analysis for bCD·9.0H₂O clathrate formed by saturation of dry bCD with water vapors at activity $P/P_0 = 0.90$ ($T = 25^{\circ}$ C).

Figure S11. Anhydrous bCD.

Figure S12. Anhydrous bCD equilibrated with saturated ethanol vapor for 72 hours ($P/P_0 = 1$, $T = 25^{\circ}$ C).

Figure S13. Anhydrous bCD equilibrated with pyridine vapor taken in 6:1 (Guest : Host) molar ratio for 72 hours ($T = 25^{\circ}$ C).

Figure S14. Anhydrous bCD equilibrated with saturated HFIP vapor for 72 hours ($P/P_0=0.49$, $T = 25^{\circ}$ C).

Figure S15. X-ray powder diffractograms of anhydrous bCD (a) and clathrates: (b) $bCD \cdot 6.5C_5H_5N$, (c) $bCD \cdot (\sim 1.7)$ HFIP with addition of standard silicon powder SRM 640d.

Figure S16. X-ray powder diffractograms for bCD and its clathrates formed by equilibration of dried bCD in binary or ternary systems with guest vapors at various activities P/P_0 : (a) dried bCD; (b) bCD·0.6MeOH at $P/P_0=0.07$; (c) bCD·0.6MeCN at $P/P_0=0.33$; (d) bCD·1.0Me₂CO at $P/P_0=1$; (e) bCD·3.8MeOH at $P/P_0=0.29$; (f) bCD·2.0MeNO₂ at $P/P_0=1$; (g) bCD·1.9MeCN·0.1C₆H₆ at $P/P_0=0.48$ (MeCN) and $P/P_0=0.06$ (C₆H₆); (h) bCD·2.1MeCN at $P/P_0=1$; (i) bCD·2.6EtOH·0.2C₆H₆ at $P/P_0=0.69$ (EtOH) and $P/P_0=0.04$ (C₆H₆); (g) bCD·2.6EtOH at $P/P_0=1$. Diffractograms a-e, g were determined with addition of standard silicon powder SRM 640d.

Figure S17. Curves of simultaneous TG/MS analysis for the bCD·2.6EtOH·0.2C₆H₆ clathrate prepared by simultaneous sorption of ethanol and benzene at constant benzene/ethanol molar ratio 1:14 ($T = 25^{\circ}$ C, ethanol activity $P/P_0 = 0.68$). MS curve of ethanol has higher level at start due to ethanol evaporation from clathrate at temperature less than 30°C.

Figure S18. Curves of simultaneous TG/MS analysis for bCD·2.2MeCN·0.1C₆H₆ clathrate prepared by simultaneous sorption of acetonitrile and benzene at constant benzene/acetonitrile molar ratio 1:15 ($T = 25^{\circ}$ C, acetonitrile activity $P/P_0 = 0.80$).

Figure S19. Curves of simultaneous TG/MS analysis for clathrates prepared by ethanol exchange for: (a) water; (b) acetonitrile; (c) 1-propanol; (d) 2-propanol; (e) 1-butanol; (f) tetrahydrofuran.

Figure S20. Curves of simultaneous TG/MS analysis for clathrates prepared by acetonitrile exchange for: (a) water; (b) methanol; (c) ethanol; (d) 1-butanol; (e) tetrahydrofuran; (f) benzene; (g) cyclohexane; (h) *n*-hexane.

Figure S21. Curves of simultaneous TG/MS analysis for clathrates prepared by THF exchange initial bCD \cdot 1.0THF \cdot 1.0H₂O clathrate for: (a) methanol; (b) acetonitrile; (c) propanol-1; (d) butanol-1; (e) cyclohexane; (f) additional sorption of THF. Experimental procedure was described elsewhere.²

References:

1 V. V. Gorbatchuk, A. K. Gatiatulin, M. A. Ziganshin, A. T. Gubaidullin and L. S. Yakimova, *J. Phys. Chem. B*, 2013, **117**, 14544–14556.

2 A. K. Gatiatulin, M. A. Ziganshin and V. V. Gorbatchuk, J. Therm. Anal. Calorim., 2014, 118(2), 987–992.