Supporting information

Graphitic C3N4 as Powerful Catalysts for All-Vanadium Redox Flow Batteries

Yuqing Huang¹, Jia Huo, Shou Dou, Kui Hu, and Shuangyin Wang*,¹

¹State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of

Chemistry and Chemical Engineering, Hunan University , Changsha, 410082, P. R.

China;

Email: shuang@hnu.edu.cn (S. Wang)

Sample	Ipa(mA)	Ipc(mA)	Vpa(V)	Vpc(V)	Ipa/Ipc	$\Delta E(V)$
Pure	10.50	5.48	1.18	0.59	1.92	0.59
C ₃ N ₄ -CF	12.95	13.84	0.91	0.76	0.93	0.16

Table S1. Electrochemical properties a obtained from cyclic voltammetry results for untreated and different Electrodes at a Scan Rate of 1mV s^{-1} .

Sample	R _S	Qm		R _P	Qt	
		Y1(mMho)	N1		Y2(Mho)	N2
Pure	1.64	0.722	0.915	53.1	0.68	0.732
C ₃ N ₄ -CF	1.53	1.10	0.925	23.9	1.35	0.828

Table S2. Fit Parameters Resulting from the Equivalent Circuit Model in Figure 4.

Fig. S1 CE, VE, EE data of cell with pure CF (a) and C_3N_4 -CF(b) at the current density of 50 mA cm⁻² for 25 charge-discharge cycles.

Raman spectroscopy results showed that the existence of C₃N₄.

Fig. S4 C1s (a) and N1s (b) XPS spectra of the $g-C_3N_4$

In Figure S3(a), the peak at 284.8 eV belongs to C-C coordination, and the peak centered at 288.1 eV corresponds to C-N coordination of C_3N_4 -CF¹, and there is another peak at around 286.1 eV could be attributed to the C–NH₂ species of the C₃N₄-CF. In addition, the sample exhibit N1s profiles at 398.7, 400.0 and 401.1 eV which can be attributed to sp²-hybridized nitrogen (C–N–C), sp³-hybridized nitrogen (N–[C]₃) and amino functional groups with a hydrogen atom (C–NH), respectively. The results demonstrate the presence of C₃N₄ surface in the CF.

1. Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi and L. Qu, *Angew Chem Int Ed Engl*, 2014, **53**, 13934-13939.