3-hydroxyflavone derivatives synthesized by a new simple method as

chemosensors for cyanide anions

Qianqian Wu^a, Zian Wang^a, Jiale Li^a, Shuang Qiu^a, Duxia Cao^{a, *}, Zhiqiang Liu^{b, *},

Ruifang Guan^a

^a School of Material Science and Engineering, Shandong Provincial Key Laboratory

of Preparation and Measurement of Building Materials, University of Jinan, Jinan

250022, Shandong, China

^b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100,

Shandong, China

*Corresponding author. E-mail address: <u>duxiacao@ujn.edu.cn</u> (D. X. Cao);

zqliu@sdu.edu.cn (Z. Q. Liu).

Supporting Information

- 1. Crystal data, data collections and structure refinements of compounds 1 and 2
- 2. N MR spectra of compounds 1 and 2
- 3. High-resolution mass spectra of compounds 1 and 2
- 4. Fluorescence spectral change of compound 1 with CN⁻ in acetonitrile
- 5. UV-vis absorption spectral change of compound 3 with CN⁻ in acetonitrile
- 6. Determination of the detection limits

7. UV-vis absorption spectral change of compounds 1 and 2 towards various anions

1. Crystal data, data collections and structure refinements of compounds 1 and 2

2									
Crystal data	1	2							
Empirical formula	C ₂₀ H ₁₈ NO ₅	C ₁₉ H ₁₈ BrNO ₃							
Formula mass	352.35	388.25							
Crystal system	triclinic	monoclinic							
Space group	P-1	$P2_1/c$							
<i>a</i> [Å]	7.0399(7)	13.3522(19)							
<i>b</i> [Å]	7.3275(7)	13.823(3)							
<i>c</i> [Å]	17.4123(17)	9.515(2)							
α [°]	89.658(8)	90.00							
β [°]	82.561(8)	92.847(18)							
γ [°]	76.168(8)	90.00							
V[Å ³]	864.53(15)	1753.9(6)							
Ζ	2	4							
$ ho_{\rm calc} [{ m g \ cm^{-3}}]$	1.354	1.470							
$\mu [{ m mm}^{-1}]$	0.098	2.360							
F(000)	370.0	792.0							
Crystal size [mm]	0.42×0.18×0.046	$0.42 \times 0.088 \times 0.036$							
θ_{\min} - θ_{\max} [°]	52.74-6.74	52.72-5.9							
T/K	293.15	293.15							
scan mode	ω, φ	ω, φ							
Index range	$-8 \le h \le 8$	$-16 \le h \le 11$							
	$-9 \le k \le 9$	$-16 \le k \le 17$							
	$-21 \le l \le 21$	- 11 ≤ 1 ≤ 11							
Collected reflections	10358	9853							
Unique reflections	3915	3503							
Refined parameters	238	220							
R1, wR2	0.0532, 0.1454	0.0665, 0.2086							

Table S1. Crystal data, date collections and structure refinements of compounds 1 and

Table S2. Selected geometric parameters (Å, •) of the crystal structures

	O3-C9 (Å)	O3-C1 (Å)	C8-C9 (Å)	C7-O1 (Å)	C7-C8 (Å)	C6-C7 (Å)	O2-C8 (Å)	Dihedral angle $\alpha(^{o})^{a}$
1	1.379(2)	1.360(2)	1.371(2)	1.247(2)	1.437(3)	1.456(3)	1.358(2)	11.52
2	1.381(6)	1.366(6)	1.358(7)	1.243(6)	1.441(7)	1.450(7)	1.381(6)	9.74

2. N MR spectra of compounds 1 and 2

(•)

3

Figure S1. ¹H and ¹³C NMR spectra of compounds **1** (a, b) and **2** (c, d) in dimethyl sulfoxide.

3. High-resolution mass spectra of compounds 1 and 2

(b)

Figure S2. High-resolution mass spectra of compounds 1 (a) and 2 (b).

4. Fluorescence spectral change of compound 1 with CN⁻ in acetonitrile

Figure S3. Fluorescence spectral change of compound 1 upon the addition of CN⁻ in acetonitrile.

5. UV-vis absorption spectral change of compound 3 with CN- in acetonitrile

Figure S4. Changes in UV-vis absorption spectra of compound **3** in acetonitrile upon the addition of 5 equivalent of TBACN.

6. Determination of the detection limits

The detection limits DL of the compounds for CN⁻ were determined from the following equation:

DL = K*Sb1/S

Where K = 2 or 3; Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve. Here K = 3, Sb1 = 0.002 for absorption; K = 3, Sb1 = 2 for fluorescence.

Figure S5. The absorbance changes of compounds 1 and 2 in acetonitrile with adding CN^{-} at specific wavelength.

Figure S6. The fluorescence changes of compounds 1 and 2 in acetonitrile with adding CN⁻ at specific wavelength

Figure S7. UV-vis spectral changes of **1** (a) and **2** (b) with $C = 10 \mu M$ in acetonitrile observed upon the addition of various anions.

Figure S8. Changes in UV-vis absorption of compound 1 at 426 nm in the presence of various anions (3 equiv.) in acetonitrile in response to CN⁻ (3 equiv.).