Electronic Supplementary Information (ESI) for RSC Advances

Electronic Supporting Information

Catecholase and phenoxazinone synthase activities of a ferromagnetically coupled tetranuclear Cu(II) complex

Merry Mitra,^a Tanay Kundu,^{b,#} Gurpreet Kaur,^{c,§} Gyaneswar Sharma,^d Angshuman Roy Choudhury,^c Yogesh Singh^d and Rajarshi Ghosh^{a,*}

^{a.} Department of Chemistry, The University of Burdwan, Burdwan 713 104, India *E-mail: rghosh@chem.buruniv.ac.in.

^{b.} Physical/Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; [#]Present address: Institut Lavoisier, UMR CNRS 8180, Universit'e de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France.

^{c.}Department of Chemical Sciences, Indian Institute of Science Education & Research, Mohali, Sector 81, S.A.S. Nagar, Knowledge City, Manauli PO, Mohali 140 306, India; [§]Present address: Department of Chemistry, DAV University, Jalandhar, Punjab 144 012, India.

^{d.} Department of Physical Sciences, Indian Institute of Science Education & Research, Mohali, Sector 81, S.A.S. Nagar, Knowledge City, Manauli PO, Mohali 140 306, India

CONTENTS

Figure. S1	H ¹ NMR spectrum of 3,5-di- <i>tert</i> -butylquinone
Figure. S2	Change in spectral pattern of complex 1 in dicholoromethane after reaction with 3,5-DTBC, observing the reaction for 4 h
Figure. S3	A plot of the difference in absorbance (ΔA) vs time to evaluate the rate of catalysis of 3,5-DTBC by ${\bf 1}$ in dichloromethane
Figure. S4	Plot of rate vs. [substrate] (3,5-DTBC) in presence of 1 in DCM; inset: Lineweaver-Burk plot
Figure. S5 (a)	ESI-MS spectrum of complex 1
Figure. S5 (b)	ESI-MS spectrum of the 1:100 mixture of 1 and 3,5-DTBC
Figure. S6	EPR spectrum of 1:100 mixture of 1 and 3,5-DTBC indicating the formation of semiquinone
Figure. S7	HRMS spectrum of 1:100 mixture of 1 and OAPH indicating the formation of APX
S1	Spectrophotometric detection of H_2O_2 in the oxidation reaction

Figure. S1. H¹ NMR Spectrum of 3,5-di-*tert*-butylquinone

Figure S2. Change in spectral pattern of complex **1** in dicholoromethane after reaction with 3,5-DTBC, observing the reaction for 4 h. This experiment was carried for 4 h due to high volatility of dichloromethane. The repetitive spectra were obtained in 9 min interval at room temperature. The peak for the coloured product (3,5-DTBQ) appears at ~390 nm which gradually shifts to 401 nm.²²

Figure S3. A plot of the difference in absorbance (ΔA) vs time to evaluate the rate of catalysis of 3,5-DTBC by **1** in dichloromethane.

Figure S4. Plot of rate vs. [substrate] (3,5-DTBC) in presence of **1** in DCM; inset: Lineweaver-Burk plot.

\bigcirc

Figure. S5 (a). ESI-MS spectrum of complex 1 in MeOH

*The mass difference of 41 (1068 – 1027 = 41) in the molecular wt of the complex is due to CH_3CN (molecular wt = 41), which separates out in the solution state (indicated in the ESI mass spectrum, m/z = 1027), which was previously in the crystal lattice in solid state (molecular wt = 1068).

Figure. S5 (b). ESI-MS spectrum of the 1:100 mixture of 1 and 3,5-DTBC in MeOH

Figure. S6. EPR spectrum of 1:100 mixture of 1 and 3,5-DTBC indicating the formation of semiquinone

Figure. S7. HRMS spectrum of 1:100 mixture of **1** and OAPH in MeOH indicating the formation of APX

S1. Spectrophotometric detection of H₂O₂ in the oxidation reaction²⁴

Reaction mixtures were prepared as in the kinetic experiments. After 1 h of reaction an equal volume of water was added and the quinone formed was extracted three times with dichloromethane. The aqueous layer was acidified with H_2SO_4 to pH = 2 to stop further oxidation, and 1 mL of a 10% solution of KI and three drops of 3% solution of ammonium molybdate were added. In the presence of hydrogen peroxide occurs the reaction

$$H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$$

and with an excess of iodide ions, the triiodide ion is formed according to the reaction

$$I_2(aq) + I^{-} = I^{3-}$$

The formation of I³⁻ was monitored spectrophotometrically due to the development of the characteristic I³⁻ band (λ = 353 nm, ϵ = 26000 M⁻¹ cm⁻¹).

Blank experiments

Blank experiments were performed twice with identical reaction conditions as that described above in this section - (i) in presence of substrate only, in absence of the catalyst (Figure A) and (ii) in absence of both substrate and catalyst (Figure B). Fig. A indicates **no** appreciable formation of H_2O_2 . A very small hump appears in the plot which is due the auto-

oxidation property of catechol in presence of air, leading to the formation of quinone, and liberating small amount of H_2O_2 . Fig. B indicates no H_2O_2 formation in absence of both catalyst and substrate, which implies the reagents were in pure form. **Identical scale is maintained for all the three plots**.

Figure B