Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information (ESI)

Enzyme mimicking inorganic hybrid Ni@MnO₂ for colorimetric

detection of uric acid in serum sample

Jaya Pal and Tarasankar Pal*

Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India

E-mail: tpal@chem.iitkgp.ernet.in

Catalytic Reduction of 4-Nitrophenol by Using Ni@MnO₂.

Typically, 300 μ L of 5 × 10⁻² M freshly prepared aqueous NaBH₄ solution was mixed with 3

mL aqueous solution of 4-nitrophenol (1 \times 10⁻⁴ M) in a quartz cuvette under ambient

condition. Then 1 mg of Ni@MnO2 nanocatalyst was added to the reaction mixture and the

progress of the reactions was recorded using a UV-vis spectrophotometer.

Sample Preparation for Surface-Enhanced Raman Scattering (SERS) Study.

In a typical procedure, 0.015 g of Ni@MnO₂ hybrid nanomaterials were dispersed in 1 mL of

the stock solution of 1,10-phenanthroline (10⁻⁵ M ethanolic solution) and this substrate-probe

assembly was incubated for 2 days. Then the materials were taken on microscope slides, and

dried to evaporate the solvent for SERS measurements using He-Ne laser (632.8 nm).

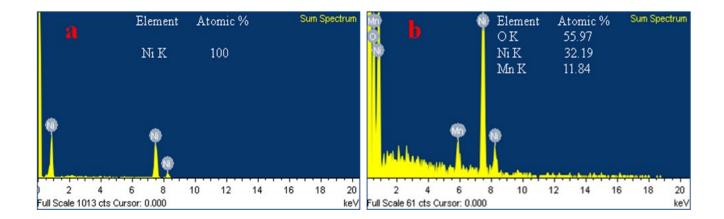
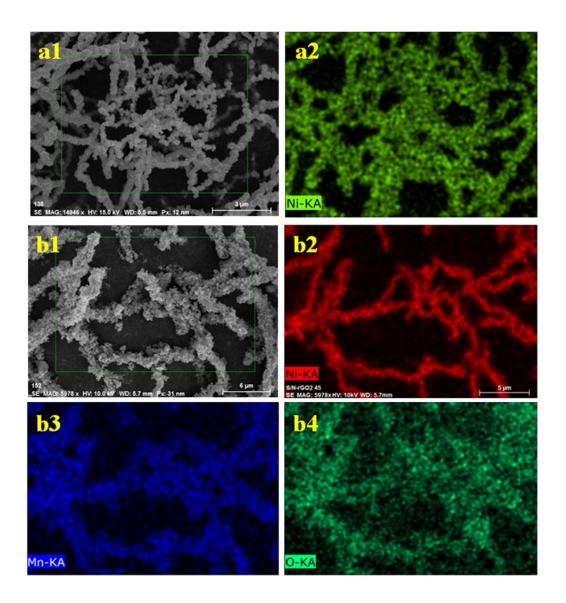
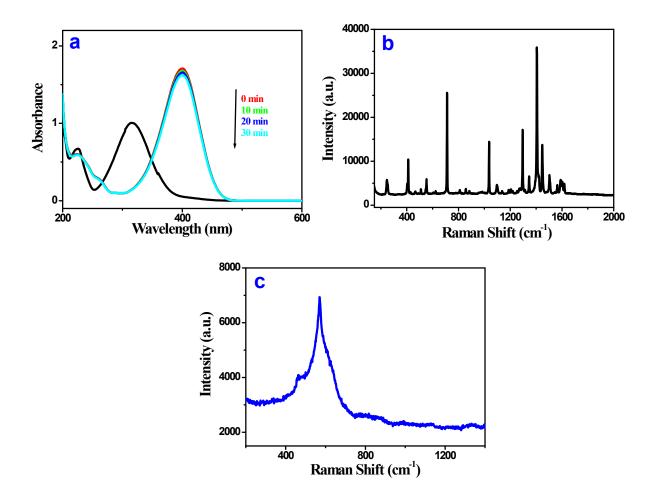




Fig. S1 EDX analysis of (a) Ni NW and (b) Ni@MnO₂ hybrid nanomaterials, respectively.

Fig. S2 Area mapping of as-prepared (a1) prickly Ni NW: for the element Ni (a2). Area mapping of (b1) Ni-MnO₂ hybridnanomaterial: for the element Ni (b2), Mn (b3) and O (b4).

Fig. S3 (a) UV-visible absorption spectra of the reduction of 4-nitrophenol by NaBH₄ in presence of 1 mg of Ni@MnO₂ catalyst. (b) Normal Raman spectra of 1,10-phenanthroline in solid state and (c) SERS spectra of 10^{-5} M 1,10-phenanthroline over Ni@MnO₂ nanoparticles.