Supporting Information

Efficient copolymerization of ethylene with norbornene or its derivatives using half-metallocenezirconium(IV) catalysts

Yulian Li, Jixing Yang, Bin Wang, Yuesheng Li*

Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

	2a	2d
Formula	$C_{30}H_{41}O_2PZrCl_2$	$C_{70}H_{84}Cl_4F_2O_4P_2Zr_2\\$
Formula weight	626.72	596.16
Crystal system	orthorhombic	monoclinic
Space group	P_{bc}/n	P_{21}/c
a (Å)	20.3736(16)	18.2887(9)
b (Å)	21.5156(16)	27.7326(14)
c (Å)	13.6999(10)	15.9855(8)
α (°)	90.00	90.00
β (°)	90.00	108.4900(10)
γ (°)	90.00	90.00
V (ų), Z	6005.4(8), 8	7689.2(7), 4
Density(Mg/m ³)	1.386	1.221
Absorpt. Coeff. (mm ⁻¹)	0.622	0.497
F (000)	2608	2928
θ range (°)	1.38 to 28.31	1.38 to 25.03
Reflect. collected	34222	38035
Independ. Reflect.	$7269(R_{int} = 0.0579)$	13552 ($R_{int} = 0.0500$)
Data/restraints/ parameters	7269/0/325	13552/2/769
Goof on F ²	1.092	0.995
R_1, wR_2	0.0934, 0.1288	0.0552, 0.1524
diff. Peak/hole (e Å-3)	1.29/-0.39	2.517/-0.624

Table S1 Crystal data and structure refinements of complexes 2a and 2d.

* Corresponding Author. E-mail: <u>ysli@tju.edu.cn</u>

Fig. S1 Molecular structure of 2d with thermal ellipsoids at 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 ¹H NMR spectra of ethylene polymers in CD₂Cl₄ (a, run 2; b, run 4; c, run 3 in Table 2).¹

Fig. S3 ¹³C spectra of ethylene/NBE copolymers produced by catalyst **2b** with different NBE contents in CDCl₃ (a: run 13, 28.1%; b: run 8, 37.4%; c: run 1, 39.3% in Table 4).

DFT calculations for catalysts 2a-d

Comonomers coordinate with the vacant in the active species from the opposite place of THF, coordinating on the Zr atom. Therefore the coordination space for catalyst **2a**, **2c** and **2d** is comparable due to the planar structure of Phenyl (Fig. S4, left), which is bigger than that of catalyst **2b** with extra methyl on the *tert*-butyl group taking some incorporation space.

Fig. S4 (a) left. The overlay of the active species of catalyst 2a, 2c and 2d; (b) right. The overlay of the active species of catalyst 2a and 2b.

As shown in the Fig. S5, the angle of <1,2,3>, distance of $D_{3,4}$ and d_{Zr-P} can be used to measure the coordination space and electronic factor quantitatively. The larger angle of <1,2,3> and shorter distance of $D_{3,4}$ together means bigger coordination space and the steric hindrance is decreased in the order: $2a > 2c \sim 2d >> 2b$. Shorter distance of d_{Zr-P} hints much stronger coordination ability of P atom to Zr atom, reflecting the more electron donating property of P moiety. Therefore, the electron withdrawing ability is decreased in the order: 2d > 2c > 2a > 2b. It is worthy to note that catalysts 2a-d only show a slightly degree of divergence in electronic factor, because of unobvious disparities in d_{Zr-P}. In all, the DFT calculations are in accordance with our experimental analysis.

Fig. S5 (a), left. The active species of catalyst **2c**. (b), right. the active species of catalyst **2b**. (To catalyst **2a**: $<1,2,3> = 124.4^{\circ}$ D_{3,4} = 4.32 Å d_{Zr-P} = 2.89 Å; catalyst **2b**: $<1,2,3> = 109.4^{\circ}$ D_{3,4} = 3.57 Å d_{Zr-P} = 2.88 Å; catalyst **2c**: $<1,2,3> = 121.0^{\circ}$ D_{3,4} = 4.21 Å d_{Zr-P} = 2.90 Å; catalyst **2d**: $<1,2,3> = 123.3^{\circ}$ D_{3,4} = 4.14 Å d_{Zr-P} = 2.92 Å. <1,2,3> is the angle between the three atoms, D_{3,4} is the distance between atom 3 and atom 4, d_{Zr-P} is the distance between atom P and Zr).

Reference

1 W. Thomas, V. Gregor, T. Alexandra, R. Philipp, G. S. Inigo and M. Stefan, *J. Am. Chem. Soc.*, 2014, **136**, 2078-2085.