Supporting Information

Hierarchical Alginate Biopolymer Papers Produced via Lanthanide Ions Coordination

Shunli Liu,^a Jun Ling,^b Kewen Li,^a Fang Yao,^a Olayinka Oderinde,^a Zhihong Zhang,^{*c} Guodong Fu^{*c}

Fig. S1 Effect of (a) Nd^{3+} ion concentrations (0.01, 0.02, 0.05, 0.1, and 0.2 M) and (b) temperature on gelation time.

Fig. S2 FTIR spectral analysis of SA biopolymers and SA-Nd(III)-1 paper.

Fig. S3 XPS spectra of (a) core-level C1s and (b) core-level O1s of the layered SA-Nd(III)-1 paper.

Figure S4. Comparison of the cross-sectional morphology and structure of the (a) SA-Gd(III), (b) SA-Ce(III), (c) SA-Yb(III), (d) SA-Ca(II), (e) SA-Fe(III), and (f) SA-Al(III) papers (SA concentrations was 2 wt %).

Fig. S5 (a-b) Typical strain-stress curves and toughness of layered SA-Nd(III)-1 papers with different water contents. (c-d) Typical strain-stress curves and toughness of layered SA-Nd(III) papers which formed under different Nd³⁺ ions concentrations. (e-f) Typical strain-stress curves and toughness of layered SA-Ce(III), SA-Gd(III) and SA-Yb(III) papers (SA, 2 wt%).

Fig. S6 TGA curves of SA-Nd(III)-1, SA-Nd(III)-2, SA-Nd(III)-3 layered papers. The curves were obtained under atmosphere of nitrogen with a temperature rising rate of 10° C ·min⁻¹

Samples	C (%)	N (%)	Nd (%)	Na (%)
^a SA-Nd(III)-2	51.0	44.87	3.92	0.21
^b SA-Nd(III)-2	51.23	44.64	3.90	0.23

Table S1. Atomic % of the SA-Nd(III)-2 paper before (^a) and after (^b) dipping in sodium chloride solution.

Table S2. The tensile strength and young's modulus of Alginate-based materials.

Samples	tensile	Young's	Dof	
	strength/MPa	modulus/GPa	Kel.	
SA/GO	69.32	3.8	[33]	
Al/GO	113	4.18	[34]	
SA-rGO	122	4.46	[38]	
GO/SA	2.33	-	[39]	
Alginate film	14	0.2	[40]	
Alginate-Based	7	0.03	[41]	
Nanofibrous	7	0.05		
Alginate-based	2.9	0.07	[42]	
film	,	0.07	['2]	
Alginate/pectin	75 7	_	[43]	
films	15.1			
SA-Nd(III)	124.2	5.25	This work	

Solvent uptake	SA-Nd(III) papers		
rate / %	25°Cª	90°C ^b	
Water	12.82°	18.34	
Ethanol	6.19	7.67	
THF	4.42	5.58	
DMF	3.07	4.15	
DMSO	4.63	5.88	
EDTA	d	d	

Table S3. Solvent uptake rate of the SA-Nd(III) hydrogel in various solvent.

^a The sample was soaked in solvent at 25 °C for 24 h. ^b The sample was soaked in solvent at 25 °C for three days, 90 °C for 4 h in a sealed vessel. ^c The calculation formula of the solvent uptake rate: (W_{wet} - W_{dry})/W_{dry}×100%. ^d The sample was dissolved in this solvent.