## Supporting information for

## **Tailorable Pseudocapacitors for Energy Storage Clothes**

Liuxue Shen<sup>b</sup>, Peng Sun<sup>a</sup>, Chuanxi Zhao<sup>a</sup>, Shaozao Tan<sup>b\*</sup>, Wenjie Mai<sup>a\*</sup>

 <sup>a</sup> Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China. E-mail: wenjiemai@gmail.com
<sup>b</sup> Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China. E-mail: tanshaozao@163.com



Figure S1 SEM image of CNTs



Figure S2 EDS spectrum of PPy



**Figure S3** Schematic drawing of (a) chemical polymerization of PPy, and (b) anion and electron transfer in PPy during electrochemical red-ox switching



**Figure S4** (a) Areal capacitors of the pure CNTs electrode and CNT-PPy hybrid electrode with different current densities. (b) Nyquist plots of the EIS for the pure CNTs electrode and flexible CNT-PPy hybrid electrode.



Figure S5 XRD patterns of the CNT,  $MnO_2$  NWs, and CNT/ $MnO_2$  NW hybrid film.



Figure S6 XPS spectra of (a)  $Mn_{3s}$ , (b)  $Mn_{2p}$  and (c)  $O_{1s}$  for  $MnO_2$  NWs



**Figure S7** Electrochemical performance of the flexible  $CNT-MnO_2$  hybrid electrode: (a) CV curves collected at different scan rates and (b) Galvanostatic charge-discharge curves at various current densities. (c) Areal capacitors of the pure CNTs electrode and CNT-MnO<sub>2</sub> hybrid electrode with different current densities. (d) Nyquist plots of the EIS for the pure CNTs electrode and flexible CNT-MnO<sub>2</sub> hybrid electrode.



**Figure S8** Photographic image shows the three tandem TSCs drive the digital watch.



Figure S9 Ragone plots of the TSCs device