Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Modified Structure of Two-Dimensional Polythiophene Derivatives by

Incorporating Electron-Deficient Units into Terthiophene-Vinylene Conjugated

Side Chains and Polymer Backbone: Synthesis, Optoelectronic and Self-

Assembly Properties, and Photovoltaic Application

Chuen-Yo Hsiow,*ab Yu-Hsiang Lin,^c Rathinam Raja,^a Syang-Peng Rwei,^c Wen-Yen Chiu,^d Chi-An Dai,^d Leeyih

Wang*a

^aCenter for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan
^bJoint Center for Artificial Photosynthesis, California Institute of Technology, 91125 Pasadena, USA
^cInstitute of Organic and Polymeric Materials, National Taipei University of Technology, 10608 Taipei, Taiwan
^dDepartment of Chemical Engineering, National Taiwan University, 10617 Taipei, Taiwan
*Corresponding Author: E-mail: chuenyo@caltech.edu (C-Y.H.); leewang@ntu.edu.tw (L.W.)

Contents for Supporting Information:

- ◎ ¹H-NMR and ¹³C-NMR spectra of M2
- © Conditions and results (GPC) for microwave-assisted Stille polymerization of P1.
- ◎ PESA spectrum of polymer films
- ^O Two-dimensional grazing incidence X-ray diffraction (GIXRD) of pristine polymer thin film.
- \bigcirc Dark *J-V* curves of polymer/PC₆₁BM devices.
- ◎ Mobility of polymer with/without PC₆₁BM
- ◎ TGA and DSC plots

Figure S1. ¹H-NMR spectrum of compound M2

Figure S2. ¹³C-NMR spectrum of compound M2

Entry	Solvent	Concentration (M)	Catalyst ^a	Condition ^b	Mn (kDa) ^c	PDI
1	Toluene	0.01	A, 5 mol%	1	5.2 ^e	1.85
2	Toluene	0.01	A, 5 mol%	2	9.5	2.32
3	Toluene	0.05	A, 5 mol%	1	11.0	2.61
4	Toluene	0.05	A, 3 mol%	1	12.0	2.58
5	Toluene	0.05	A, 1 mol%	1	13.2	2.59
6	Toluene	0.05	B, 5 mol%	1	10.0	4.33
7	<i>p</i> -xylene	0.05	A, 3 mol%	2	14.0	2.36
8	<i>p</i> -xylene	0.05	B, 3 mol%	2	14.0	4.61
9	<i>p</i> -xylene	0.05	A, 3 mol%	3	12.1	2.60
10 ^d	Toluene	0.01	A, 5 mol%	4	12.0	3.61

^aA : Pd(PPh₃)₄; B : Pd₂dba₃, P(*o*-tol)₃; ^bCondition (1) raise temperature from r.t. to 200 °C as fast as possible; hold the temperature 30 min; cool down to 55 °C. Condition (2) raise temperature from r.t. to 200 °C as fast as possible; hold the temperature 60 min; cool down to 55 °C. Condition (3) raise temperature from r.t. to 250 °C as fast as possible; hold the temperature 30 min; cool down to 55 °C. Condition (4) reflux 2 days. °Soxhlet extractions by using methanol and hexane quickly to remove the small molecules and oligomers and finally chloroform to obtain the target compounds for optimizing polymerization conditions. M_n and PDI of the polymers were estimated by GPC using polystyrene as standards in THF. ^dconventional heating. °Soxhlet extractions by only using methanol to remove impurity and chloroform to obtain the target polymer.

O PESA spectrum of polymer films

Figure S3. PESA spectrum of (a) **P3HT**; (b) **P1**; (c) **P2**; (d) **P3** film prepared by spin-coating followed by thermal annealing at 120°C for 15 min and measured under identical condition.

(c) P3 (a) P1 (b) P2 $q_z(nm^{-1})$ $q_z(nm^{-1})$ $q_z(nm^{-1})$ $q_{xy}(nm^{-1})$ 20 20 15 10 15 20 $q_{xy}(nm^{-1})$ $q_{xy}(nm^{-1})$ 200 1200 1400 400 800 1000 Intensity

^(C) Two-dimensional grazing incidence X-ray diffraction (GIXRD) of pristine polymer thin film.

Figure S4. Two-dimensional grazing incidence X-ray diffraction (GIXRD) from thin films of (a) P1; (b)P2; (c) P3 prepared by drop-cast followed by thermal annealing at 120°C for 15 min and measured under identical condition.

 \bigcirc Dark *J-V* curves of polymer/PC₆₁BM devices.

Figure S5. Dark J-V curves of polymer/PC₆₁BM devices.

 \bigcirc Mobility of polymer with/without PC₆₁BM.

Figure S6. $\ln(J_{dark}L^3V^{-2})$ versus $(VL^{-1})^{0.5}$ plots of (a) the pristine polymers for the measurement of hole mobility; the polymers blend PC₆₁BM for the measurement of (b) hole and (c) electron mobility by the SCLC method.

Table S2.	Mobility of P1 ,	P2 and P3	with/without PC ₆	₁ BM by	the SCLC method.
-----------	-------------------------	-----------	------------------------------	--------------------	------------------

	Pristine polymer hole mobility (cm^2/(V*sec))	Blend with PC ₆₁ BM hole mobility (cm^2/(V*sec))	Blend with PC ₆₁ BM electron mobility (cm^2/(V*sec))	h+/e-
P1	3.9×10 ⁻⁴	2.1*10-4	2.5*10-4	0.84
P2	3.8×10 ⁻⁵	1.1x10-6	3.5x10-4	0.003
Р3	1.0×10 ⁻⁴	8.4x10-5	3.3x10-4	0.25

 \bigcirc TGA and DSC.

Figure S7. (a) TGA and (b-d) DSC second heating profiles of P1, P2, and P3 with a heating rate of 10 $^{\circ}$ C/min under N₂ atmosphere and a cooling rate of 10 $^{\circ}$ C/min.