Supporting Information

A new synthetic approach to fused nine-ring systems of the indolo[3,2-*b*]carbazole family through the double Pd-catalyzed intramolecular C-H arylation

Roman A. Irgashev*, Nikita A. Kazin, Grigory A. Kim, Gennady L. Rusinov, Valery N. Charushin

Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences,

Ekaterinburg, 620990, Russia

*E-mail: <u>irgashev@ios.uran.ru</u>

Table of content

- 1. Copies of ¹H and ¹³C NMR spectra of new compounds S2-S34
- 2. Absorption, excitation and emission spectra of compounds **9a-e** and **11a**, **e** S35 S38

S39 - S42

- 3. Cyclic voltammetry data for compounds **9a-e** and **11a,e**
- 4. Thermogravimetric analysis (TGA) data for compounds **9a-e** and **11a,e** S43 S46

<u>Compound</u>	¹ H NMR	¹³ C NMR
7e	S2	S 3
8 a	S 4	S 5
8 b	S 6	-
8c	S 7	S 8
8d	S 9	S10
8e	S 11	S 12
8f	S13	S 14
8g	S15	S16
9a	S17	S18
9b	S19	S20
9c	S21	S22
9d	S23	S24
9e	S25	S26
10a	S27	S28
10e	S29	S 30
11a	S 31	S32
11e	S 33	S 34

9.0

3.90 3.76 3.74 3.73 $\begin{smallmatrix} 1.51\\ 1.51\\ 1.49\\ 1.49\\ 1.48\\ 1.48\\ 1.12\\ 1.$

 \neg

9.0

12.07 J

1.5

H-H-L

ம 4

1.0

0.37

0.5

9.0

8.5

8.0

1.92 2:00 ↓ 2:01 ↓ 1.91

7.0

6.5

6.0

5.5

5.0

7.5

4.5

ppm

4.00-

4.0

3.5

6.00-J

2.5

3.0

8.55 4.09 6.03 4

1.0

0.5

4.00-

1.5

2.0

S26

₹3.94 ₹3.92

9.0

3. Cyclic voltammetry data for compounds **9a-e** and **11a**, **e**

Cyclic voltammetry was carried out on a Metrohm Autolab PGSTAT**128N** potentiostat with a standard three-electrode configuration. Typically, a three electrodes cell equipped with a glass carbon working electrode, a Ag/AgNO₃ (0.01M) reference electrode, and a glass carbon rod counter electrode was employed. The all measurements were done in anhydrous CH₂Cl₂ with tetrabutylammonium tetrafluoroborate (0.1 M) as the supporting electrolyte under an argon atmosphere at a scan rate of 100 mV/s. The potential of the reference electrode was calibrated using the ferrocene/ferrocenium redox couple (Fc/Fc⁺). The HOMO energy values were estimated from the onset potentials (E_{ox}^{onset}) of the first oxidation event according to the following equation: E_{HOMO} (eV) = $- [E_{ox}^{onset} - E_{1/2}(Fc/Fc^+) + 5.1]$, where $E_{1/2}(Fc/Fc^+)$, as the half-wave potential of the Fc/Fc⁺ couple against the Ag/Ag⁺ electrode. It was defined at 0.22 V in the calibration experiment.

TGA curve of compound 9a:

TGA curve of compound **9b**:

TGA curve of compound **9c**:

TGA curve of compound **9d**:

TGA curve of compound **9e**:

TGA curve of compound **11a**:

TGA curve of compound **11e**:

