Supporting information

for

β-Carboline-directed decarboxylative acylation of *ortho*-C(sp2)-H of aryl ring of aryl (β-carbolin-1-yl) methanones with α-ketoacids under Palladium catalysis

Shivalinga Kolle,^a and Sanjay Batra*^{a,b}

^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India.

^bAcademy of Scientific and Innovative Research, New Delhi-110025, India

E mail: <u>batra_san@yahoo.co.uk</u>, s_batra@cdri.res.in

Contents:

1. General information	S-2
2. Spectroscopic data for starting aryl (β -carbolin-1-yl) methanones	S-2
3. References	S- 3
4. Copies of ¹ H and ¹³ C NMR spectra	S-4

1. General information:

All reactions were monitored by thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm. The melting points were recorded on a hot stage apparatus using silicone oil and are uncorrected. IR spectra were recorded using a FTIR spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on 400 and 500 MHz spectrometers, using TMS as an internal standard (chemical shifts in δ). Peak multiplicities of NMR signals were designated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), m (multiplet) etc. The ESI-MS were recorded on Ion Trap Mass spectrometer and the HRMS spectra were recorded as ESI-HRMS on a Q-TOF LC-MS/MS mass spectrometer. Commercial grade reagents and solvents were used without further purification.

2. The aryl (β -carbolin-1-yl) methanones were prepared according to the literature procedure.¹

(6-Bromo-9H-pyrido[3,4-b]indol-1-yl)(phenyl)methanone (1m). A yellow solid, mp 106-

108 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.42-7.49 (m, 3H), 7.55 (t, J = 6.9 Hz, 1H), 7.62-7.64 (m, 1H), 8.05 (d, *J* = 4.8 Hz, 1H), 8.23-8.26 (m, 3H), 8.56 (d, J = 4.9 Hz, 1H), 10.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

= 113.7, 118.7, 122.7, 124.7, 128.2, 130.7, 131.4, 132.2, 132.7, 136.7, 137.4, 137.5, 138.4, 139.7, 195.5. MS (ESI+) m/z = 351.1. ESI-HRMS calculated for $C_{18}H_{11}BrN_2O$ [MH]⁺: 351.0133, found: 351.0135.

(6-Chloro-9H-pyrido[3,4-b]indol-1-yl)(phenyl)methanone (1n). A yellow solid, mp 124-

126 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.45-7.54 (m, 5H), 8.04 (d, J = 8.6 Hz, 2H), 8.25 (d, *J* = 7.5 Hz, 2H), 8.55 (d, *J* = 4.3 Hz, 1H), 10.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 113.2, 118.7, 121.6, 122.2, 126.5,

128.2, 129.6, 130.9, 131.4, 132.7, 136.8, 137.5, 137.8, 138.4, 139.4, 195.5. MS (ESI+) m/z = 307.1. ESI-HRMS calculated for C₁₈H₁₁ClN₂O [MH]⁺: 307.0638, found: 307.0636.

(9H-carbazol-1-yl)(phenyl)methanone (4)². A pale yellow solid, mp 154-156 °C. ¹H NMR

(400 MHz, CDCl₃): δ (ppm) = 7.15-7.19 (m, 1H), 7.23 (t, J = 7.3 Hz, 1H), 7.40-7.55 (m, 5H), 7.73 (d, J = 7.6 Hz, 3H), 8.05 (d, J = 7.8 Hz, 1H), 8.25 (d, J = 7.5 Hz, 1H), 10.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 111.5, 118.1,

118.6, 120.3, 120.5, 122.4, 125.2, 126.1, 126.8, 128.4, 129.5, 130.9, 131.6, 139.2, 140.1, 140.4, 198.2. MS (ESI+) m/z = 272.1.

References:

- (a) Y. P Zhu, M. C Liu, Q Cai, F. C Jia and A. X. Wu, *Chem. Eur. J.*, 2013, **19**, 10132.
 (b) N. Battini, A. K. Padala, N. Mupparapu, R. A. Vishwakarma and Q. N. Ahmed, *RSC Adv.*, 2014, **4**, 26258.
- A. R. Katritzky, G. W. Rewcastle and L. M. V. de Miguel, *J. Org.* Chem., 1988, 53, 794.

¹H NMR and ¹³C NMR Spectra of Compounds:

Figure. S-1: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(phenyl)methanone (**3aa**).

Figure. S-2: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(phenyl)methanone (3aa).

Figure. S-3: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(p-tolyl)methanone (**3ab**).

Figure. S-4: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(p-tolyl)methanone (3ab).

Figure. S-5: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(4-chlorophenyl)methanone (**3ac**).

Figure. S-6: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(4-chlorophenyl)methanone (**3ac**).

Figure. S-7: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(3-nitrophenyl)methanone (**3ad**).

Figure. S-8: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(3-nitrophenyl)methanone (**3ad**).

Figure. S-9: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(benzo[d][1,3]dioxol-5-yl)methanone (**3ae**).

Figure. S-10: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(benzo[d][1,3]dioxol-5-yl)methanone (**3ae**).

Figure. S-11: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(o-tolyl)methanone (**3af**).

Figure. S-12: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(o-tolyl)methanone (**3af**).

Figure. S-13: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(thiophen-2-yl)methanone (**3ag**).

Figure. S-14: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)phenyl)(thiophen-2-yl)methanone (**3ag**).

Figure. S-15: ¹H-NMR spectrum of (2-Benzoyl-4-methylphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ba**).

Figure. S-16: ¹³C-NMR spectrum of (2-Benzoyl-4-methylphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ba**).

Figure. S-17: ¹H-NMR spectrum of (2-Benzoyl-4-methoxyphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (3ca).

Figure. S-18: ¹³C-NMR spectrum of (2-Benzoyl-4-methoxyphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (3ca).

Figure. S-19: ¹H-NMR spectrum of (4-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)-[1,1'-biphenyl]-3-yl)(phenyl)methanone (**3da**).

Figure. S-20: ¹³C-NMR spectrum of (4-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)-[1,1'-biphenyl]-3-yl)(phenyl)methanone (**3da**).

Figure. S-21: ¹H-NMR spectrum of (2-Benzoyl-4-bromophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ea**).

Figure. S-22: ¹³C-NMR spectrum of (2-Benzoyl-4-bromophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ea**).

Figure. S-23: ¹H-NMR spectrum of (2-Benzoyl-4-chlorophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3fa**).

Figure. S-24: ¹³C-NMR spectrum of (2-Benzoyl-4-chlorophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3fa**).

Figure. S-25: ¹H-NMR spectrum of (2-Benzoyl-5-methoxyphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ga**).

Figure. S-26: ¹³C-NMR spectrum of (2-Benzoyl-5-methoxyphenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ga**).

Figure. S-27: ¹H-NMR spectrum of (2-Benzoyl-5-chlorophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ha**).

Figure. S-28: ¹³C-NMR spectrum of (2-Benzoyl-5-chlorophenyl)(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ha**).

Figure. S-29: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)thiophen-3-yl)(phenyl)methanone (**3ka**).

Figure. S-30: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)thiophen-3-yl)(phenyl)methanone (**3ka**).

Figure. S-31: ¹H-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)benzofuran-3-yl)(phenyl)methanone (**3la**).

Figure. S-32: ¹³C-NMR spectrum of (2-(9*H*-pyrido[3,4-*b*]indole-1-carbonyl)benzofuran-3-yl)(phenyl)methanone (**3la**).

Figure. S-33: ¹H-NMR spectrum of (2-Benzoylphenyl)(6-bromo-9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ma**).

Figure. S-34: ¹³C-NMR spectrum of (2-Benzoylphenyl)(6-bromo-9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3ma**).

Figure. S-35: ¹H-NMR spectrum of (2-Benzoylphenyl)(6-chloro-9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3na**).

Figure. S-36: ¹³C-NMR spectrum of (2-Benzoylphenyl)(6-chloro-9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (**3na**).

Figure. S-37: ¹H-NMR spectrum of Methyl 1-(2-benzoylbenzoyl)-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (**3oa**).

Figure. S-38: ¹³C-NMR spectrum of Methyl 1-(2-benzoylbenzoyl)-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (30a).

Figure. S-39: ¹H-NMR spectrum of Methyl 1-(2-benzoyl-4-methylbenzoyl)-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (**3pa**).

Figure. S-40: ¹³C-NMR spectrum of Methyl 1-(2-benzoyl-4-methylbenzoyl)-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (**3pa**).

Figure. S-41: ¹H-NMR spectrum of (2-Benzoylphenyl)(pyridin-2-yl)methanone (3qa).

Figure. S-42: ¹³C-NMR spectrum of (2-Benzoylphenyl)(pyridin-2-yl)methanone (3qa).

Figure. S-43: ¹H-NMR spectrum of (1-(4-Phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5aa).

Figure. S-44: ¹³C-NMR spectrum of (1-(4-Phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5aa).

Figure. S-45: ¹H-NMR spectrum of 1-(4-(4-Chlorophenyl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ac**).

Figure. S-46: ¹³C-NMR spectrum of 1-(4-(4-Chlorophenyl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5ac).

Figure. S-47: ¹H-NMR spectrum of 1-(4-(3-Nitrophenyl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ad**).

Figure. S-48: ¹³C-NMR spectrum of 1-(4-(3-Nitrophenyl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ad**).

Figure. S-49: ¹H-NMR spectrum of 1-(4-(Benzo[*d*][1,3]dioxol-5-yl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ae**).

Figure. S-50: ¹³C-NMR spectrum of 1-(4-(Benzo[*d*][1,3]dioxol-5-yl)phthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ae**).

Figure. S-51: ¹H-NMR spectrum of 1-(6-Methyl-4-phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ba**).

Figure. S-52: ¹³C-NMR spectrum of 1-(6-Methyl-4-phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (**5ba**).

Figure. S-53: ¹H-NMR spectrum of 1-(6-Methoxy-4-phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5ca).

Figure. S-54: ¹³C-NMR spectrum of 1-(6-Methoxy-4-phenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5ca).

Figure. S-55: ¹H-NMR spectrum of 1-(4,6-Diphenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5da).

Figure. S-56: ¹³C-NMR spectrum of 1-(4,6-Diphenylphthalazin-1-yl)-9*H*-pyrido[3,4-*b*]indole (5da).

Figure. S-57: ¹H-NMR spectrum of 4-Phenyl-7-(9*H*-pyrido[3,4-*b*]indol-1-yl)thieno[2,3-*d*]pyridazine (**5ka**).

Figure. S-58: ¹³C-NMR spectrum of 4-Phenyl-7-(9*H*-pyrido[3,4-*b*]indol-1-yl)thieno[2,3-*d*]pyridazine (5ka).

Figure. S-59: ¹H-NMR spectrum of (6-Bromo-9*H*-pyrido[3,4-*b*]indol-1-yl)(phenyl)methanone (**1m**).

Figure. S-60: ¹³C-NMR spectrum of (6-Bromo-9*H*-pyrido[3,4-*b*]indol-1-yl)(phenyl)methanone (1m).

Figure. S-61: ¹H-NMR spectrum of (6-Chloro-9*H*-pyrido[3,4-*b*]indol-1-yl)(phenyl)methanone (**1n**).

Figure. S-62: ¹³C-NMR spectrum of (6-Chloro-9*H*-pyrido[3,4-*b*]indol-1-yl)(phenyl)methanone (**1n**).

Figure. S-63: ¹H-NMR spectrum of (9*H*-carbazol-1-yl)(phenyl)methanone (4).

Figure. S-64: ¹³C-NMR spectrum of (9*H*-carbazol-1-yl)(phenyl)methanone (4).