Supporting Information

Regioselective Synthesis of Imidazo[1,5-*a*]quinoxalines

and Methyl N-Phenylbenzimidats on Ionic Liquid Support

Li-Hsun Chen,^a Chih-Hsien Kao,^a Sandip Dhole,^a Indrajeet J. Barve,^a Li-Ching Shen,^a

Wen-Sheng Chung*^a and Chung-Ming Sun*^{a,b}

^aDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10, Taiwan,

ROC

^bDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-

Chuan 1st Road, Kaohsiung 807-08, Taiwan, ROC

Email: cmsun@mail.nctu.edu.tw

Table of contents

	S	\$28-122
7.	¹ H NMR, ¹³ C NMR, LRMS, HRMS and IR spectra of Comp	pound 12a-
6.	Characterization Data for Compound 14b-c	.S26-27
5.	Characterization Data for Compound 13b-i	.S20-25
4.	Characterization Data for Compound 12b-s	.S8-19
3.	Stepwise proton NMR monitoring of the synthesis of 6	.S7
2.	Experimental procedures	.S2-6
1.	General methods	.S1

$^{1}\mathrm{H}$	NMR,	¹³ C	NMR,	LRMS	and	HRMS	of	Compound	1 3 a-			
i	•••••	•••••			•••••		••••	S123	-159			
9. ¹ H NMR, ¹³ C NMR, LRMS and HRMS of Compound 14a-c S160-171												
X-ra	y crystal	l data	of comp	ound 12a	1	•••••		S172-	-180			
X-r	ay crysta	ıl data	a of com	pound 13	c		••••	S181-	189			
	¹ H i ¹ H N X-ra X-ra	¹ H NMR, i ¹ H NMR, ¹³ C X-ray crystal X-ray crysta	¹ H NMR, ¹³ C i ¹ H NMR, ¹³ C NM X-ray crystal data X-ray crystal data	¹ H NMR, ¹³ C NMR, i ¹ H NMR, ¹³ C NMR, LRM ¹ H NMR, ¹³ C NMR, LRM X-ray crystal data of comp X-ray crystal data of comp	¹ H NMR, ¹³ C NMR, LRMS i ¹ H NMR, ¹³ C NMR, LRMS and HF X-ray crystal data of compound 12 a X-ray crystal data of compound 13	¹ H NMR, ¹³ C NMR, LRMS and i ¹ H NMR, ¹³ C NMR, LRMS and HRMS o X-ray crystal data of compound 12a X-ray crystal data of compound 13c	¹ H NMR, ¹³ C NMR, LRMS and HRMS i ¹ H NMR, ¹³ C NMR, LRMS and HRMS of Compo X-ray crystal data of compound 12a X-ray crystal data of compound 13c	¹ H NMR, ¹³ C NMR, LRMS and HRMS of i ¹ H NMR, ¹³ C NMR, LRMS and HRMS of Compound 1 X-ray crystal data of compound 12a X-ray crystal data of compound 13c	¹ H NMR, ¹³ C NMR, LRMS and HRMS of Compound i			

1. General Methods

Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard (TMS) and coupling constants are reported in Hertz. Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel-coated Kiselgel 60 F₂₅₄ plates. Compound purification was carried out by flash chromatography using the indicated solvent and silica gel 60 (Merck, 230-400 mesh). Microwave irradiation experiments were carried out in 5 mL glass vials sealed with Teflon[®] cap in a CEM-Discover microwave instrument using irradiation power from 0 to 100 W. High-resolution mass spectra (HRMS) were recorded in ESI mode using a magnetic sector mass analyzer and TOF mass spectrometer. IR spectra were obtained using FT-IR spectrometer. All reagents were purchased from commercial sources and used without further purification.

2. Experimental procedures

General procedure for the synthesis of IL-attached amine 6

To the stirred solution of 4-fluoro-3-nitrobenzoic acid **1** (1.12 mmol, 1.2 equiv) in acetonitrile was added DCC (1.12 mmol, 1.2 equiv), DMAP (0.04 mmol, 0.05 equiv), and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([hydemim] [BF₄]) **2** (0.93 mmol, 1 equiv). The reaction mixture was refluxed for 24 h. After completion of the reaction, dicyclohexylurea was filtered off, and the filtrate was concentrated. The crude residue was washed with cold diethyl ether (50 mL \times 3) and dried *in vacuo* to afford **3** in 96% yield. A mixture of **3** (1.41 mmol, 1 equiv), triethyl amine (7.05 mmol, 5 equiv) and imidazole **4** (1.7 mmol, 1.2 equiv) in acetonitrile was refluxed for 16 h. After completion of the reaction mixture was precipitated and washed with cold diethyl ether (50 mL \times 3). The precipitate was dried to give **5** in 90% yield. To a stirred solution of **5** in methanol were added zinc (8.96 mmol, 7 equiv) and ammonium formate (19.2

mmol, 15 equiv), and the reaction mixture was stirred at room temperature for 15 min. After completion of the reaction, the reaction mixture was filtered through a Celite bed to remove zinc, and the filtrate was concentrated. Dichloromethane (30 mL) was added to the crude residue to precipitate ammonium formate, and the mixture was again passed through a Celite bed. The filtrate was concentrated to yield **6** in 88% yield.

General experimental procedure for the synthesis of methyl 4,4-dimethyl-4,5-dihydroimidazo[1,5-*a*]quinoxaline-7-carboxylate (12a)

To a stirred solution of acetone **7a** (0.055 g, 0.96 mmol) in toluene (10 mL) was added trifluoroacetic acid (0.01 mL), amine **6a** (0.1 g 0.32 mmol) and MgSO₄ (0.1 g, w/w) at room temperature. The resulting reaction mixture was irradiated in microwave for 20 min at 130 °C (250 W). The progress of the reaction was monitored by regular proton NMR. After completion of the reaction, reaction mixture was filtered to remove MgSO₄. The solvent was evaporated under reduced pressure. The residue of **8a** was washed with excess of cold ether (25 mL x 3) and dried *in vacuo*. The crude product obtained was used as it is for methanolysis reaction. To a stirred solution of **8a** (0.1 g, 0.227 mmol) in methanol (20 mL) was added potassium cyanide (0.103 g, 1.59 mmol) and the

reaction mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure and the reaction mixture was precipitated and washed with diethyl ether (50 mL). The combined organic layers were concentrated under vacuum. The crude product was purified by flash chromatography (eluent: 20 % EA in hexanes) to obtain the corresponding imidazo[1,5-*a*]quinoxaline **12a** (0.051 g, 89 %). This procedure was used for the synthesis of all the rest derivatives of **12**.

Methyl 4,5-dihydro-3,4,4-trimethylimidazo[1,5-*a*]quinoxaline-7-carboxylate (12a)

¹H NMR (300 MHz, CDCl₃) δ 7.93 (s, 1H), 7.54 (dd, J = 8.3, 1.7 Hz, 1H), 7.47 (d, J = 1.7 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 3.91 (s, 3H), 3.88 (s, NH), 2.36 (s, 3H), 1.58 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 135.2, 131.6, 129.5, 128.1, 127.1, 125.9, 120.9, 117.3, 114.9, 52.6, 52.2, 29.6, 14.8; MS (ESI, m/z): 272 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺ 272.1399, found 272.1397; IR (cm⁻¹, neat): 3349, 2956, 2923, 1710.

General experimental procedure for the synthesis of (Z)-methyl 4-(1Himidazol-1-yl)-3-((methoxy(4-nitrophenyl)methylene)amino)benzoate (13a)

To a stirred solution of 4-nitrobenzaldehyde 9a (0.11 g, 0.75 mmol) in acetonitrile (10 mL) was added trifluoroacetic acid (0.01 mL), amine 6 (0.1 g 0.25 mmol) and MgSO₄ (0.1 g, w/w) at room temperature. The reaction mixture was refluxed for 24 h. Progress of the reaction was directly monitored by proton NMR with ionic liquid support attached. After completion of the reaction, MgSO₄ was removed by filtration and the filtrate was evaporated under reduced pressure. The crude product 11a was washed with excess of cold diethyl ether (25 mL x 3) and dried *in vacuo*. The obtained crude product was used as it is for the next step. To a stirred solution of **11a** (0.1 g, 0.18 mmol) in methanol (20 mL) was added potassium cyanide (0.085 g, 1.32 mmol) and the reaction mixture was stirred at room temperature for 2.5 h. The solvent was evaporated under reduced pressure. To the crude residue of **13a**, cold diethyl ether (10 mL) was added to precipitate ionic liquid support. The precipitated ionic liquid support was filtered and washed with excess of cold diethyl ether (10 mL \times 3). The filtrate was concentrated under vacuum. The crude product was purified by flash chromatography (eluent: 55 % EA in hexanes) to afford (Z)-methyl 4-(1Himidazol-1-yl)-3-((methoxy(4-nitrophenyl) methylene) amino) benzoate 13a (0.061 g, 85 %). This procedure was used for the synthesis of the rest all derivatives of 13.

(Z)-methyl

nitrophenyl)methylene)amino)benzoate (13a)

Pale yellow solid, 147-149 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 8.7 Hz, 2H), 7.77 (dd, J = 8.2, 1.8 Hz, 1H), 7.58 (d, J = 1.7 Hz, 1H), 7.48 (s, 1H), 7.23 (d, J = 8.2 Hz, 1H), 7.18 (d, J = 8.7 Hz, 2H), 7.10 (s, 1H), 6.95 (s, 1H), 3.99 (s, 3H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 159.5, 148.9, 142.0, 137.1, 136.2, 132.1, 130.8, 129.9, 129.6, 126.0, 125.8, 125.2, 123.7, 119.5, 55.4, 52.8; MS (ESI, m/z): 381.4 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₉H₁₇N₄O₅ [M+H] ⁺ 381.1199, found 381.1195; IR(cm⁻¹, neat): 3448, 3087, 2996, 2950, 1722.

3. Stepwise proton NMR monitoring of the synthesis of 6

4. Characterization Data for Compound 12b-12s

Methyl 5'*H*-spiro[cyclopentane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'carboxylate (12b)

¹H NMR (300 MHz, DMSO-d₆) δ 8.40, (s, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.57 (s, 1H), 7.32 (d, J = 7.9 Hz, 1H), 6.89 (s, 1H), 6.58 (s, NH), 3.82 (s, 3H), 1.90-1.71 (m, 8H); ¹³C NMR (75 MHz, DMSO-d₆) δ 166.8, 137.2, 133.2, 132.8, 127.9, 125.9, 122.5, 119.5, 117.2, 116.4, 61.1, 52.9, 40.2, 23.8; MS (ESI, m/z): 284 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₆H₁₈N₃O₂ [M+H]⁺ 284.1399, found 284.1402; IR (cm⁻¹, neat): 3365, 3093, 2927, 2859, 1704.

Methyl 5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'carboxylate (12c)

¹H NMR (300 MHz, DMSO- d_6) δ 8.39 (s, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.33 (dd, J = 8.2, 1.8 Hz, 1H), 6.93 (s, 1H), 6.59 (s, NH), 3.83 (s, 3H), 1.70-1.67 (m, 6H), 1.53-1.50 (m, 4H); ¹³C NMR (75 MHz, DMSO- d_6) δ

166.2, 136.5, 133.8, 132.7, 128.0, 125.9, 123.0, 119.5, 117.7, 116.3, 52.9, 52.5, 37.0, 25.7, 21.3; MS (ESI, m/z): 298 (M+H)⁺; HRMS (ESI, m/z) calcd for $C_{17}H_{20}N_3O_2$ [M+H]⁺ 298.1555, found 298.1558; IR (cm⁻¹, neat): 3187, 2950, 2865, 1708.

Methyl 4-ethyl-4,5-dihydro-4-methylimidazo[1,5-*a*]quinoxaline-7-

Carboxylate (12d)

¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1H), 7.56 (dd, J = 8.1, 1.8 Hz, 1H), 7.52 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 6.91 (s, 1H), 3.98 (s, NH), 3.92 (s, 3H), 1.78 (m, 2H), 1.55 (s, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166,9, 135.9, 132.2, 131.4, 128.4, 125.5, 123.6, 120.5, 117.3, 115.2, 54.2, 52.6, 35.0, 26.8, 8.9; MS (ESI, m/z): 272 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺ 272.1399, found 272.1397; IR(cm⁻¹, neat): 3222, 2971, 2994, 2921, 1704.

4,5-dihydro-4-methyl-4-propylimidazo[1,5-a]quinoxaline-7-

Carboxylate (12e)

Methyl

¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.53 (dd, J = 8.2, 1.7 Hz, 1H), 7.48 (d, J = 1.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 6.90 (s, 1H), 4.01 (s, NH), 3.92 (s, 3H), 1.74-1.66 (m, 2H), 1.56 (s, 3H), 1.29-1.10 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 135.8, 132.3, 131.4, 128.5, 125.5, 123.6, 120.6, 117.2, 115.2, 53.9, 52.6, 44.9, 27.6, 17.9, 14.6; MS (ESI, m/z): 286 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₆H₂₀N₃O₂ [M+H] ⁺ 286.1555, found 286.1557; IR (cm⁻¹, neat): 3349, 2952, 2931, 2865, 1708.

Methyl 4,5-dihydro-4-methyl-4-pentylimidazo[1,5-*a*]quinoxaline-7-Carboxylate (12f)

¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.53 (dd, J = 8.2, 1.7 Hz, 1H), 7.48 (d, J = 1.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 6.90 (s, 1H), 4.00 (s, NH), 3.92 (s, 3H), 1.75-1.67 (m, 2H), 1.55 (s, 3H), 1.36-1.17 (m, 6H), 0.84 (t, J = 6.9 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 166.9, 136.7, 132.4, 131.4, 128.5, 125.5, 123.5, 120.6, 117.3, 115.2, 53.9, 52.6, 42.4, 32.2, 27.5, 24.3, 22.9, 14.4; MS (ESI, *m/z*): 314 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₈H₂₄N₃O₂ [M+H]⁺ 314.1868, found 314.1865; IR(cm⁻¹, neat): 3355, 2952, 2931, 2857, 1716.

Methyl 4-methyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'carboxylate (12g)

¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.55 (d, J = 1.7 Hz, 1H), 7.52 (dd, J = 7.4, 1.7 Hz, 1H), 7.43 (d, J = 7.4 Hz, 1H), 6.91 (s, 1H), 4.60 (s, NH), 3.92 (s, 3H), 2.05-2.00 (m, 2H), 1.81-1.70 (m, 4H), 1.53-1.48 (m, 1H), 1.29-1.15 (m, 2H), 1.00 (d, J = 6.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 134.9, 134.3, 131.5, 128.5, 126.3, 122.6, 121.2, 117.8, 115.4, 52.6, 51.9, 35.9, 31.9, 30.1, 22.7; MS (ESI, m/z): 312 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₈H₂₂N₃O₂ [M+H]⁺ 312.1712, found 312.1713; IR (cm⁻¹, neat): 3363, 3089, 2937, 2913, 2863, 1704.

Methyl 5'*H*-spiro[cycloheptane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'-

carboxylate (12h)

¹H NMR (300 MHz, CDCl₃) δ 8.00 (s, 1H), 7.54 (dd, J = 8.1, 1.7 Hz, 1H), 7.52 (d, J = 1.7 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 6.97 (s, 1H), 4.31 (s, NH), 3.92 (s, 3H), 2.12-2.04 (m, 2H), 1.96-1.88 (m, 2H), 1.66-1.53 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 135.4, 134.7, 131.4, 128.5, 126.2, 122.9, 120.9, 117.8, 115.2, 56.7, 52.5, 40.7, 30.3, 22.8; MS (ESI, m/z): 312 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₈H₂₂N₃O₂ [M+H]⁺ 312.1712, found 312.1710; IR(cm⁻¹, neat): 3349, 3330, 3093, 2931, 1704.

Methyl 4,5-dihydro-4-methyl-4-phenylimidazo[1,5-*a*]quinoxaline-7carboxylate (12i)

¹H NMR (300 MHz, CDCl₃) δ 8.03 (s, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.49 (dd, J = 8.3, 1.6 Hz, H), 7.38 (d, J = 8.3 Hz, 1H), 7.39-7.10 (m, 5H), 7.02 (s, 1H), 5.14 (s, NH), 3.88 (s, 3H), 1.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 145.2 ,135.7, 132.3, 131.9, 128.9, 128.6, 127.8, 126.2, 125.9, 124.6, 121.2,

117.8, 115.5, 56.7, 52.6, 29.6; MS (ESI, *m/z*): 320 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₉H₁₈N₃O₂ [M+H]⁺ 320.1399, found 320.1397; IR(cm⁻¹, neat): 3357, 2981, 2944, 1714.

Methyl 3'-methyl-5'*H*-spiro[cyclopentane-1,4'-imidazo[1,5-*a*]quinoxaline]-7 '-carboxylate (12j)

¹H NMR (300 MHz, CDCl₃) δ 7.95 (s, 1H), 7.55 (dd, J = 8.3, 1.7 Hz, 1H), 7.46 (d, J = 1.7 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 4.10 (s, NH), 3.91 (s, 3H), 2.34 (s, 3H), 2.48-2.16 (m, 2H), 1.95-1.74 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 135.3, 131.2, 129.7, 127.9, 127.0, 126.5, 121.0, 117.4, 115.0, 62.5, 52.6, 39.7, 24.2, 14.7; MS (ESI, m/z): 298 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₇H₂₀N₃O₂ [M+H]⁺ 298.1555, found 298.1553; IR(cm⁻¹, neat): 3291, 3124, 2950, 1702.

Methyl 3'-methyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline]-7' -carboxylate (12k)

¹H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H), 7.53-7.50 (m, 2H), 7.38 (d, J = 8.8 Hz, 1H), 4.66 (s, NH), 3.91 (s, 3H), 2.39 (s, 3H), 1.94-1.72 (m, 8H), 1.58-1.21 (m, 2H);¹³C NMR (75 MHz, CDCl₃) δ 166.9, 134.6, 131.5, 129.4, 128.1, 127.8, 126.3, 120.9, 117.5, 114.9, 53.6, 52.6, 35.2, 25.3, 21.3, 15.5; MS (ESI, *m/z*): 312 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₈H₂₂N₃O₂ [M+H]⁺ 312.1712, found 312.1710; IR(cm⁻¹, neat): 3372, 3116, 2919, 2850, 1706.

Methyl 3',4-dimethyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline] -7'-carboxylate (12l)

¹H NMR (300 MHz, CDCl₃) δ 7.90 (s, 1H), 7.51 (d, J = 1.4 Hz, 1H), 7.48 (dd, J = 8.3, 1.4 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 4.66 (s, NH), 3.88 (s, 3H), 2.36 (s, 3H), 1.93-1.84 (m, 3H), 1.70-1.66 (m, 2H), 1.49-1.43 (m, 1H), 1.27-1.03 (m, 3H), 0.98 (d, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 134.6, 131.5, 129.5, 128.1, 127.5, 126.4, 120.9, 117.5, 114.9, 53.1, 52.5, 35.2, 32.1, 30.0, 22.7, 15.5; MS (ESI, *m/z*): 326 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₉H₂₄N₃O₂

[M+H]⁺ 326.1868, found 326.1869; IR(cm⁻¹, neat): 3363, 3093, 2915, 2859, 1702.

Methyl 4-ethyl-3'-methyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]-quinox aline]-7'-carboxylate (12m)

¹H NMR (300 MHz, CDCl₃) δ 7.93 (s, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.51 (dd, J = 8.7, 1.6 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 4.60 (s, NH), 3.92 (s, 3H), 2.38 (s, 3H), 2.01-1.65 (m, 8H), 1.39-1.09 (m, 3H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 134.6, 131.5, 129.5, 128.1, 127.6, 126.4, 120.9, 117.5, 114.9, 53.6, 52.5, 38.7, 35.2, 30.1, 27.7, 15.4, 11.8; MS (ESI, m/z): 340 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₀H₂₆N₃O₂ [M+H]⁺ 340.2025, found 340.2024; IR (cm⁻¹, neat): 3305, 3118, 2948, 2856, 1704.

Methyl 1'-methyl-5'*H*-spiro[cyclopentane-1,4'-imidazo[1,5-*a*]quinoxaline]-7 '-carboxylate (12n)

¹H NMR (300 MHz, DMSO-d₆) δ 7.65 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.37 (dd, J = 8.4, 1.7 Hz, 1H), 6.69 (s, 1H), 6.50 (s, NH), 3.83 (s, 3H), 2.50 (s, 3H), 1.87-1.66 (m, 8H); ¹³C NMR (75 MHz, DMSO-d₆) δ 166.8, 142.5, 138.9, 135.2, 127.9, 127.5, 119.8, 119.7, 118.2, 117.5, 61.2, 52.9, 39.1, 23.7, 15.0; MS (ESI, m/z): 298 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₇H₂₀N₃O₂ [M+H]⁺ 298.1555, found 298.1556; IR(cm⁻¹, neat): 3345, 2950, 2871, 1718.

Methyl 1'-methyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'-carboxylate (120)

¹H NMR (300 MHz, CDCl₃) δ 7.55 (s, 1H), 7.51-7.46 (m, 2H), 6.75 (s, 1H), 4.65 (s, NH), 3.86 (s, 3H), 2.68 (s, 3H), 1.76-1.67 (m, 2H), 1.60-1.34 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 142.6, 136.6, 135.6, 128.3, 127.9, 121.0, 120.2, 118.0, 117.5, 52.6, 52.6, 35.8, 25.4, 21.9, 17.7; MS (ESI, *m/z*): 312 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₈H₂₂N₃O₂ [M+H]⁺ 312.1712, found 312.1709; IR(cm⁻¹, neat): 3369, 2929, 2852, 1716.

Methyl 1-ethyl-3,4-dimethyl-4-pentyl-4,5-dihydroimidazo[1,5-a]-quinoxalin

e-7-carboxylate (12p)

¹H NMR (300 MHz, CDCl₃) δ 7.53 (dd, J = 8.7, 1.6 Hz, 1H), 7.47 (d, J = 1.5 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 3.83 (s, 3H), 3.02 (q, J = 7.4 Hz, 2H), 2.30 (s, 3H), 1.55 (s, 3H), 1.42 (t, J = 7.4 Hz, 3H), 1.32-1.16 (m, 8H), 0.82 (t, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 145.9, 136.9, 129.0, 127.9, 127.8, 127.6, 120.8, 117.5, 117.4, 55.1, 52.6, 41.2, 32.3, 26.9, 24.2, 24.2, 22.9, 14.8, 14.4, 12.4; MS (ESI, m/z): 356 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₁H₃₀N₃O₂ [M+H]⁺ 356.2338, found 356.2340; IR(cm⁻¹, neat): 3349, 2954, 2931, 2857, 1720.

Methyl 1'-ethyl-3'-methyl-5'*H*-spiro[cyclopentane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'-carboxylate (12q)

¹H NMR (300 MHz, CDCl₃) *δ* 7.55 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.49 (d, *J* = 1.8 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 4.12 (s, NH), 3.90(s, 3H), 3.02 (q, *J* = 7.4 Hz, 2H), 2.31 (s, 3H), 2.19-2.15 (m, 2H), 1.83-1.80 (m, 6H), 1.41 (t, *J* = 7.4 Hz, 3H); ¹³C

NMR (75 MHz, CDCl₃) δ 166.9, 145.9, 137.3, 128.9, 128.7, 128.0, 127.5, 121.3, 121.3, 117.8, 117.7, 62.9, 52.6, 38.6, 24.0, 14.6, 12.5; MS (ESI, *m/z*): 326 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₉H₂₄N₃O₂ [M+H]⁺ 326.1868, found 326.1870; IR(cm⁻¹, neat): 3351, 2950, 2871, 1718.

Methyl 1'-ethyl-3'-methyl-5'*H*-spiro[cyclohexane-1,4'-imidazo[1,5-*a*]quinoxaline]-7'-carboxylate (12r)

¹H NMR (300 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.41 (d, J = 8.2 Hz, 1H), 4.67 (s, NH), 3.87 (s, 3H), 2.97 (q, J = 7.4 Hz, 2H), 2.32 (s, 3H), 2.01-1.68 (m, 10H), 1.37 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 145.6, 136.3, 129.6, 128.6, 128.2, 127.6, 121.2, 117.8, 117.6, 53.7, 52.5, 34.3, 25.3, 23.9, 21.3, 14.6, 12.5; MS (ESI, m/z): 340 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₀H₂₆N₃O₂ [M+H]⁺ 340.2025, found 340.2026; IR(cm⁻¹, neat): 3378, 2927, 2856, 1718.

1-Ethyl-3,4-dimethyl-4-phenyl-4,5-dihydroimidazo[1,5-*a*]quinoxalin-7-yl acetate (12s)

¹H NMR (300 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.45 (d, J = 8.8 Hz, 1H), 7.39-7.36 (m, 2H), 7.32-7.21 (m, 3H), 4.52 (s, NH), 3.89 (s, 3H), 3.04 (q, J =7.4 Hz, 2H), 1.99 (s, 3H), 1.88 (s, 3H), 1.45 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 146.0, 144.8, 136.9, 129.9, 128.8, 128.5, 128.1, 127.8, 126.8, 126.8, 121.2, 117.8, 117.8, 57.7, 52.6, 28.2, 24.0, 14.0, 12.4; MS (ESI, m/z): 362 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₂H₂₄N₃O₂ [M+H]⁺ 362.1868, found 362.1866; IR(cm⁻¹, neat): 3372, 2977, 2933, 1718.

5. Characterization Data for Compound 13b-i

(Z)-methyl 4-(1H-imidazol-1-yl)-3-((methoxy (naphthalen-2-yl) methylene) amino)benzoate (13b)

Yellow oil; ¹H NMR (300 MHz, Acetone-d₆) δ 7.83 (dd, J = 8.3, 1.7, Hz, 2H), 7.77 (s, 1H), 7.75 – 7.69 (m, 3H), 7.60 – 7.49 (m, 3H), 7.46 (d, J = 8.3 Hz, 1H), 7.33 (s, 1H), 7.20 (dd, J = 8.5, 1.7 Hz, 1H), 7.08 (s, 1H), 4.04 (s, 1H), 3.79 (s, 1H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.4, 161.2, 142.7, 137.0, 133.8, 132.8, 132.4, 129.8, 129.1, 128.6, 127.9, 127.8, 127.7, 127.6, 126.7, 125.3, 124.6, 124.4, 119.5, 54.2, 51.6; MS (ESI, m/z): 386.3 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₃H₂₀N₃O₃ [M+H] ⁺ 386.1505, found 386.1500.

(Z)-methyl 4-(1H-imidazol-1-yl)-3-((methoxy (phenyl) methylene) amino) benzoate (13c)

Yellow solid; 159-161 °C; ¹H NMR (300 MHz, Acetone-d₆) δ 7.74 (dd, J= 8.4, 1.7 Hz, 1H), 7.66 (s, 1H), 7.49 – 7.44 (m, 2H), 7.41 – 7.33 (m, 1H), 7.33 – 7.22 (m, 3H), 7.18 – 7.10 (m, 2H), 7.05 (s, 1H), 3.99 (s, 3H), 3.85 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.4, 161.2, 142.7, 136.9, 132.6, 130.4, 129.9, 129.0, 128.9, 128.2, 128.1, 127.1, 125.3, 124.5, 124.4, 119.5, 54.0, 51.6; MS (ESI, *m/z*): 336.2 (M+H)⁺; HRMS (ESI, *m/z*) calcd for C₁₉H₁₈N₃O₃ [M+H]⁺ 386.1348, found 386.1344.

(Z)-methyl 3-(((2-fluorophenyl) (methoxy) methylene) amino)-4-(1Himidazol-1-yl)benzoate (13d)

Brown oil; ¹H NMR (300 MHz, Acetone-d₆) δ 7.82 (s, 1H), 7.73 (dd, J = 8.3, 1.9 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.36 (d, J = 1.8 Hz, 1H), 7.23 – 7.13 (m, 2H), 7.11 (s, 1H), 7.01 (t, J = 8.5 Hz, 1H), 4.01 (s, 3H), 3.82 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.3, 160.0, 158.7, 156.7, 141.5, 137.2, 133.4, 132.6, 132.4, 130.0, 129.3, 129.0, 125.1, 124.9, 124.5, 123.7, 119.7, 119.6, 115.7, 115.5, 54.4, 51.5; MS (ESI, m/z): 354.2 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₉H₁₇FN₃O₃[M+H]⁺ 354.1254, found 354.1252.

(Z)-methyl 3-(((4-bromophenyl)(methoxy) methylene) amino)-4-(1Himidazol-1-yl)benzoate (13e)

Yellow solid; 114-116 °C; ¹H NMR (300 MHz, MeOD) δ 7.79 (dd, J = 8.3, 1.9 Hz, 1H), 7.63 (s, 1H), 7.57 (d, J = 1.8 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.26 – 7.21 (m, 1H), 7.10 – 7.06 (m, 1H), 7.01 – 6.93 (m, 2H), 3.97 (s, 3H), 3.90 (s, 3H); ¹³C NMR (75 MHz, MeOD) δ 165.92, 160.59, 142.58, 137.02, 131.85, 131.23, 130.45, 129.69, 129.14, 127.86, 125.58, 124.75, 124.57, 119.87, 53.86, 51.50; MS (ESI, m/z): 414 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₉H₁₇BrN₃O₃ [M+H]⁺ 414.0453, found 414.0450.

(Z)-methyl 4-(1H-imidazol-1-yl)-3-((methoxy (thiophen-2-yl) methylene) amino)benzoate (13f)

Yellow oil; ¹H NMR (300 MHz, Acetone-d₆) δ 7.90 (dd, J = 8.3, 2.0 Hz, 1H), 7.68 (s, 1H), 7.66 – 7.58 (m, 3H), 7.26 (s, 1H), 7.10 (dd, J = 3.8, 1.2 Hz, 1H), 7.04 – 6.95 (m, 2H), 3.94 (s, 3H), 3.89 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.4, 154.0, 142.8, 136.9, 132.6, 131.9, 131.2, 130.7, 130.5, 129.0, 127.2, 126.0, 125.1, 123.9, 119.6, 53.9, 51.7; MS (ESI, m/z): 342.2 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₇H₁₆N₃O₃S [M+H]⁺ 342.0912, found 342.0906.

(Z)-methyl 4-(1H-imidazol-1-yl)-3-((methoxy (5-methylthiophen-2-yl) methylene) amino)benzoate (13g)

Pale yellow solid; 119-121 °C; ¹H NMR (300 MHz, Acetone-d₆) δ 7.89 (dd, J = 8.2, 1.9 Hz, 1H), 7.70 (s, 1H), 7.65 – 7.57 (m, 2H), 7.27 (s, 1H), 7.01 (s, 1H), 6.92 (d, J = 3.8 Hz, 1H), 6.70 – 6.64 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.39 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.4, 154.0, 146.2, 142.9, 137.0, 132.6, 132.4, 130.5, 128.9, 128.2, 126.0, 125.8, 125.0, 123.9, 119.6, 53.7, 51.7, 14.2; MS (ESI, m/z): 356.1 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₈H₁₈N₃O₃S [M+H]⁺ 356.1069, found 356.1068.

(Z)-methyl 3-((furan-2-yl(methoxy)methylene)amino)-4-(1H-imidazol-1-

yl)benzoate (13h)

Brown solid; 89-91 °C; ¹H NMR (300 MHz, Acetone-d₆) δ 7.85 (dd, J = 8.2, 1.9 Hz, 1H), 7.67 (s, 1H), 7.62 – 7.51 (m, 3H), 7.24 (d, J = 1.0 Hz, 1H), 7.00 (s, 1H), 6.54 (dd, J = 3.6, 0.7 Hz, 1H), 6.46 (dd, J = 3.5, 1.8 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.5, 150.7, 145.6, 143.5, 143.0, 137.0, 132.4, 130.2, 128.9, 125.7, 124.6, 123.3, 119.6, 116.3, 111.5, 53.5, 51.6; MS (ESI, m/z): 326.1 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₇H₁₆N₃O₄ [M+H]⁺ 326.1141, found 326.1133.

(Z)-methyl 3-((methoxy(4-nitrophenyl)methylene)amino)-4-(2-methyl-1Himidazol-1-yl)benzoate (13i)

Yellow solid; 163-165 °C; ¹H NMR (300 MHz, Acetone-d₆) δ 8.17 (s, 1H), 8.15 (s, 1H), 7.78 (dd, J = 8.2, 1.9 Hz, 1H), 7.68 (d, J = 1.9 Hz, 1H), 7.43-7.36 (m,

3H), 6.85 (dd, J = 7.4, 1.4 Hz, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 1.94 (s, 3H); ¹³C NMR (75 MHz, Acetone-d₆) δ 165.4, 158.6, 148.8, 144.2, 143.7, 136.2, 132.4, 131.0, 129.8, 128.1, 127.6, 124.7, 124.2, 123.3, 120.1, 54.3, 51.7, 12.4; MS (ESI, m/z): 395.3 (M+H)⁺; HRMS (ESI, m/z) calcd for C₂₀H₁₉N₄O₅ [M+H]⁺ 395.1355, found 395.1349.

6. Characteristic Data for Compound 14b-c

Methyl 4-hexyl-1-methylimidazo[1,5-a]quinoxaline-7-carboxylate (14a)

Off white solid; 81-83 °C; ¹H NMR (400 MHz, acetone) δ 8.40 (d, J = 2.0 Hz, 1H), 8.36 (d, J = 8.7 Hz, 1H), 8.09 (dd, J = 8.7, 2.1 Hz, 1H), 7.80 (s, 1H), 3.95 (s, 3H), 3.06 (s, 3H), 3.01 – 2.96 (m, 2H), 1.90 (dt, J = 15.3, 7.5 Hz, 2H), 1.52 – 1.42 (m, 2H), 1.41-1.32 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, acetone-d₆) δ 165.5, 158.1, 136.8, 130.3, 127.4, 125.1, 116.2, 51.6, 34.5, 31.5, 27.1, 22.3, 17.7, 13.4; MS (ESI, m/z): 326.2 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₉H₂₄N₃O₂ [M+H]⁺ 326.1869, found 326.1863.

Off-white solid; 171-173 °C; ¹H NMR (400 MHz, acetone-d₆) δ 9.11 (s, 1H), 8.47 (d, J = 1.7 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.14 (dd, J = 8.6, 1.9 Hz, 1H), 8.00 (s, 1H), 3.96 (s, 3H), 3.22 (tt, J = 11.5, 3.5 Hz, 1H), 1.98 – 1.86 (m, 3H), 1.85 – 1.75 (m, 3H), 1.61 – 1.47 (m, 3H), 1.42 – 1.31 (m, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 165.2, 161.7, 135.8, 130.7, 128.3, 128.0, 126.5, 115.1, 51.7, 43.2, 31.0, 25.9, 25.9; MS (ESI, m/z): 310.3 (M+H)⁺; HRMS (ESI, m/z) calcd for C₁₈H₂₀N₃O₂ [M+H]⁺ 310.1556, found 310.1551.

Methyl 4-hexylimidazo[1,5-a]quinoxaline-7-carboxylate (14c)

Off-white solid; 175-177 °C; ¹H NMR (400 MHz, acetone-d₆) δ 9.12 (s, 1H), 8.47 (d, *J* = 1.9 Hz, 1H), 8.38 (d, *J* = 8.5 Hz, 1H), 8.16 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.97 (s, 1H), 3.96 (s, 3H), 3.11 – 3.03 (m, 2H), 1.93 (dt, *J* = 15.3, 7.5 Hz, 2H), 1.54 – 1.44 (m, 2H), 1.41 – 1.30 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H); MS (ESI, *m*/*z*): 312.3 (M+H)⁺; HRMS (ESI, *m*/*z*) calcd for C₁₈H₂₂N₃O₂ [M+H]⁺ 312.1712, found 312.1706.

7. ¹H NMR, ¹³C NMR, LRMS, HRMS and IR spectra of Compound 12a-s

¹H NMR spectrum (300 MHz) of compound **12a** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound **12a** in CDCl₃

ESI-LRMS of compound 12a

ESI-HRMS of compound 12a

IR spectrum of compound 12a

¹H NMR spectrum (300 MHz) of compound **12b** in DMSO-d₆

DEPT ¹³C NMR spectrum (75 MHz) of compound **12b** in DMSO-d₆

/d=/Data/yu/KAO133/2/pdata/1 Administrator Thu Jun 5 17:08:25 2008

ESI-LRMS of compound 12b

/d=/Data/yu/KAO133/1/pdata/1 Administrator Thu Jun 5 17:11:25 2008

ESI-HRMS of compound 12b

IR spectrum of compound 12b

¹H NMR spectrum (300 MHz) of compound **12c** in DMSO-d₆

DEPT ¹³C NMR spectrum (75 MHz) of compound 12c in DMSO-d₆

/d=/Data/yu/KAO134/1/pdata/1 Administrator Thu Jun 5 17:16:47 2008

ESI-LRMS of compound 12c

ESI-HRMS of compound 12c

IR spectrum of compound **12c**

¹H NMR spectrum (300 MHz) of compound **12d** in $CDCl_3$

 ^{13}C NMR spectrum (75 MHz) of compound 12d in CDCl_3

ESI-LRMS of compound 12d

ESI-HRMS of compound 12d

IR spectrum of compound 12d

¹H NMR spectrum (300 MHz) of compound **12e** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12e** in CDCl₃

ESI-LRMS of compound 12e

ESI-HRMS of compound 12e

IR spectrum of compound **12e**

¹H NMR spectrum (300 MHz) of compound **12f** in CDCl₃

 13 C NMR spectrum (75 MHz) of compound **12f** in CDCl₃

ESI-LRMS of compound 12f

ESI-HRMS of compound 12f

IR spectrum of compound 12f

¹H NMR spectrum (300 MHz) of compound 12g in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound 12g in CDCl₃

ESI-LRMS of compound 12g

ESI-HRMS of compound 12g

IR spectrum of compound 12g

¹H NMR spectrum (300 MHz) of compound **12h** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12h** in CDCl₃

ESI-LRMS of compound 12h

ESI-HRMS of compound 12h

IR spectrum of compound **12h**

¹H NMR spectrum (300 MHz) of compound **12i** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound **12i** in CDCl₃

ESI-LRMS of compound 12i

ESI-HRMS of compound 12i

IR spectrum of compound 12i

¹H NMR spectrum (300 MHz) of compound **12j** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12j** in CDCl₃

ESI-LRMS of compound 12j

ESI-HRMS of compound 12j

IR spectrum of compound 12j

¹H NMR spectrum (300 MHz) of compound **12k** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12k** in CDCl₃

ESI-LRMS of compound 12k

ESI-HRMS of compound 12k

IR spectrum of compound 12k

¹H NMR spectrum (300 MHz) of compound **12l** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound **12l** in CDCl₃

ESI-LRMS of compound 12l

ESI-HRMS of compound 12l

IR spectrum of compound 12l

¹H NMR spectrum (300 MHz) of compound **12m** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound 12m in CDCl_3

ESI-LRMS of compound 12m

ESI-HRMS of compound 12m

IR spectrum of compound **12m**

¹H NMR spectrum (300 MHz) of compound **12n** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12n** in CDCl₃

ESI-LRMS of compound 12n

ESI-HRMS of compound 12n

IR spectrum of compound **12n**

¹H NMR spectrum (300 MHz) of compound **120** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound 12o in CDCl₃

ESI-LRMS of compound 120

ESI-HRMS of compound 120

IR spectrum of compound 120

¹H NMR spectrum (300 MHz) of compound 12p in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12p** in CDCl₃

ESI-LRMS of compound 12p

ESI-HRMS of compound **12p**

IR spectrum of compound **12p**

¹H NMR spectrum (300 MHz) of compound **12q** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12q** in CDCl₃

ESI-LRMS of compound 12q

ESI-HRMS of compound 12q

IR spectrum of compound 12q

¹H NMR spectrum (300 MHz) of compound **12r** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound 12r in CDCl₃

ESI-LRMS of compound 12r

ESI-HRMS of compound 12r

IR spectrum of compound **12r**

¹H NMR spectrum (300 MHz) of compound **12s** in CDCl₃

¹³C NMR spectrum (75 MHz) of compound **12s** in CDCl₃

ESI-LRMS of compound 12s

ESI-HRMS of compound 12s

IR spectrum of compound 12s

8. ¹H NMR, ¹³C NMR, LRMS and HRMS of Compound 13a-i

¹H NMR spectrum (300 MHz) of compound **13a** in CDCl₃

 ^{13}C NMR spectrum (75 MHz) of compound **13a** in CDCl₃

ESI-HRMS of compound 13a

IR spectrum of compound 13a

¹H NMR spectrum (400 MHz) of compound **13b** in Acetone- d_6

¹³C NMR spectrum (101 MHz) of compound **13b** in Acetone-d₆

ESI-LRMS of compound 13b

ESI-HRMS of compound 13b

¹H NMR spectrum (400 MHz) of compound **13c** in Acetone-d₆

 13 C NMR spectrum (101 MHz) of compound **13c** in Acetone-d₆

ESI-HRMS of compound 13c

¹H NMR spectrum (400 MHz) of compound **13d** in Acetone- d_6

 13 C NMR spectrum (101 MHz) of compound **13d** in Acetone-d₆

ESI-LRMS of compound 13d

ESI-HRMS of compound 13d

¹H NMR spectrum (400 MHz) of compound 13e in Acetone-d₆

 13 C NMR spectrum (101 MHz) of compound **13e** in Acetone-d₆

ESI-LRMS of compound 13e

ESI-HRMS of compound 13e

¹H NMR spectrum (400 MHz) of compound 13f in Acetone-d₆

ESI-LRMS of compound 13f

ESI-HRMS of compound 13f

¹H NMR spectrum (400 MHz) of compound 13g in Acetone-d₆

¹³C NMR spectrum (101 MHz) of compound **13g** in Acetone- d_6

ESI-LRMS of compound 13g

ESI-HRMS of compound 13g

¹H NMR spectrum (400 MHz) of compound **13h** in Acetone-d₆

 13 C NMR spectrum (101 MHz) of compound **13h** in Acetone-d₆

ESI-LRMS of compound 13h

ESI-HRMS of compound 13h

¹H NMR spectrum (400 MHz) of compound **13i** in Acetone-d₆

ESI-LRMS of compound 13i

ESI-HRMS of compound 13i

9. ¹H NMR, ¹³C NMR, LRMS and HRMS of Compound 14a-c

¹H NMR spectrum (400 MHz) of compound **14a** in Acetone-d₆

 13 C NMR spectrum (101 MHz) of compound **14a** in Acetone-d₆

ESI-LRMS of compound 14a

ESI-HRMS of compound 14a

¹H NMR spectrum (400 MHz) of compound **14b** in Acetone- d_6

 13 C NMR spectrum (101 MHz) of compound **14b** in Acetone-d₆

ESI-HRMS of compound 14b

¹H NMR spectrum (400 MHz) of compound **14c** in Acetone- d_6

¹³C NMR spectrum (101 MHz) of compound **14c** in Acetone- d_6

ESI-LRMS of compound 14c

10. X-ray crystal data of compound 12a

ORTEP diagram of compound 12a. Atomic displacement ellipsoids are drawn

at the 50% probability level

CCDC no. of 12a: 891457

Identification code	mo_120560lt_0m	
Empirical formula	C15 H17 N3 O2	
Formula weight	271.32	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 8.2166(6) Å	$\alpha = 90^{\circ}$.
	b = 15.0686(10) Å	$\beta = 90^{\circ}$.
	c = 22.6298(15) Å	$\gamma = 90^{\circ}.$
Volume	2801.9(3) Å ³	
Z	8	
Density (calculated)	1.286 Mg/m ³	
Absorption coefficient	0.088 mm ⁻¹	
F(000)	1152	
Crystal size	0.25 x 0.20 x 0.20 mm ³	

Table 1. Crystal data and structure refinement for mo_120560lt_0m.

Theta range for data collection	1.80 to 26.48°.
Index ranges	-10<=h<=10, -18<=k<=18, -28<=l<=26
Reflections collected	19670
Independent reflections	2893 [R(int) = 0.0454]
Completeness to theta = 26.48°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.7938
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2893 / 0 / 185
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0438, $wR2 = 0.1096$
R indices (all data)	R1 = 0.0585, wR2 = 0.1185
Largest diff. peak and hole	0.585 and -0.581 e.Å ⁻³

	Х	У	Z	U(eq)
O(1)	8716(1)	6133(1)	5076(1)	22(1)
O(2)	7931(1)	7130(1)	4397(1)	24(1)
N(1)	3548(2)	3811(1)	3686(1)	16(1)
N(2)	2430(2)	2549(1)	3395(1)	21(1)
N(3)	3238(2)	5547(1)	3361(1)	17(1)
C(1)	9864(2)	6781(1)	5293(1)	25(1)
C(2)	7814(2)	6399(1)	4615(1)	18(1)
C(3)	6678(2)	5703(1)	4404(1)	16(1)
C(4)	5486(2)	5949(1)	4000(1)	16(1)
C(5)	4396(2)	5323(1)	3775(1)	16(1)
C(6)	4600(2)	4436(1)	3952(1)	16(1)
C(7)	2223(2)	4038(1)	3338(1)	17(1)
C(8)	1538(2)	3255(1)	3168(1)	20(1)
C(9)	48(2)	3070(1)	2805(1)	34(1)
C(10)	5779(2)	4189(1)	4358(1)	18(1)
C(11)	6815(2)	4824(1)	4591(1)	18(1)
C(12)	3620(2)	2909(1)	3700(1)	18(1)
C(13)	1779(2)	5005(1)	3259(1)	18(1)
C(14)	430(2)	5265(1)	3695(1)	27(1)
C(15)	1232(2)	5198(1)	2625(1)	26(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for mo_120560lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(2)	1.340(2)
O(1)-C(1)	1.4434(19)
O(2)-C(2)	1.2113(19)
N(1)-C(12)	1.361(2)
N(1)-C(7)	1.386(2)
N(1)-C(6)	1.414(2)
N(2)-C(12)	1.314(2)
N(2)-C(8)	1.389(2)
N(3)-C(5)	1.377(2)
N(3)-C(13)	1.469(2)
N(3)-H(3)	0.8800
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(3)	1.483(2)
C(3)-C(4)	1.391(2)
C(3)-C(11)	1.394(2)
C(4)-C(5)	1.396(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.406(2)
C(6)-C(10)	1.386(2)
C(7)-C(8)	1.363(2)
C(7)-C(13)	1.513(2)
C(8)-C(9)	1.499(2)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-C(11)	1.385(2)
C(10)-H(10)	0.9500
C(11)-H(11)	0.9500

Table 3. Bond lengths [Å] and angles [°] for $mo_120560lt_0m$.

C(12)-H(12)	0.9500
C(13)-C(15)	1.531(2)
C(13)-C(14)	1.535(2)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(2)-O(1)-C(1)	115.12(13)
C(12)-N(1)-C(7)	107.12(13)
C(12)-N(1)-C(6)	128.98(14)
C(7)-N(1)-C(6)	123.89(13)
C(12)-N(2)-C(8)	105.78(13)
C(5)-N(3)-C(13)	122.34(13)
C(5)-N(3)-H(3)	118.8
C(13)-N(3)-H(3)	118.8
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(2)-C(2)-O(1)	122.94(15)
O(2)-C(2)-C(3)	124.27(15)
O(1)-C(2)-C(3)	112.79(13)
C(4)-C(3)-C(11)	120.69(14)
C(4)-C(3)-C(2)	117.76(14)
C(11)-C(3)-C(2)	121.52(14)
C(3)-C(4)-C(5)	120.69(14)
C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7

N(3)-C(5)-C(4)	121.69(14)
N(3)-C(5)-C(6)	120.59(14)
C(4)-C(5)-C(6)	117.54(14)
C(10)-C(6)-C(5)	121.86(14)
C(10)-C(6)-N(1)	122.06(14)
C(5)-C(6)-N(1)	116.08(14)
C(8)-C(7)-N(1)	105.74(14)
C(8)-C(7)-C(13)	134.47(14)
N(1)-C(7)-C(13)	119.65(14)
C(7)-C(8)-N(2)	109.85(14)
C(7)-C(8)-C(9)	130.77(15)
N(2)-C(8)-C(9)	119.36(15)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(11)-C(10)-C(6)	119.72(15)
C(11)-C(10)-H(10)	120.1
C(6)-C(10)-H(10)	120.1
C(10)-C(11)-C(3)	119.39(15)
C(10)-C(11)-H(11)	120.3
C(3)-C(11)-H(11)	120.3
N(2)-C(12)-N(1)	111.51(14)
N(2)-C(12)-H(12)	124.2
N(1)-C(12)-H(12)	124.2
N(3)-C(13)-C(7)	108.64(12)
N(3)-C(13)-C(15)	106.36(13)
C(7)-C(13)-C(15)	111.35(14)
N(3)-C(13)-C(14)	110.25(13)
C(7)-C(13)-C(14)	110.08(13)

C(15)-C(13)-C(14)	110.09(14)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(13)-C(15)-H(15A)	109.5
C(13)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(13)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5

Symmetry transformations used to generate equivalent atoms:
	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	22(1)	20(1)	25(1)	0(1)	-5(1)	-5(1)
O(2)	21(1)	16(1)	33(1)	1(1)	-2(1)	-3(1)
N(1)	15(1)	14(1)	19(1)	0(1)	0(1)	1(1)
N(2)	21(1)	18(1)	23(1)	0(1)	-2(1)	-2(1)
N(3)	17(1)	15(1)	20(1)	4(1)	-1(1)	-1(1)
C(1)	23(1)	23(1)	29(1)	-3(1)	-5(1)	-6(1)
C(2)	14(1)	18(1)	21(1)	-2(1)	4(1)	2(1)
C(3)	13(1)	17(1)	19(1)	-2(1)	4(1)	-1(1)
C(4)	17(1)	13(1)	20(1)	1(1)	4(1)	1(1)
C(5)	15(1)	17(1)	15(1)	-1(1)	3(1)	2(1)
C(6)	13(1)	15(1)	18(1)	-1(1)	2(1)	0(1)
C(7)	14(1)	20(1)	16(1)	0(1)	0(1)	1(1)
C(8)	19(1)	20(1)	23(1)	2(1)	-2(1)	-1(1)
C(9)	32(1)	27(1)	42(1)	1(1)	-16(1)	-6(1)
C(10)	17(1)	15(1)	22(1)	1(1)	0(1)	2(1)
C(11)	14(1)	19(1)	21(1)	0(1)	-1(1)	1(1)
C(12)	18(1)	14(1)	22(1)	1(1)	0(1)	0(1)
C(13)	15(1)	17(1)	22(1)	1(1)	0(1)	0(1)
C(14)	22(1)	22(1)	38(1)	0(1)	7(1)	4(1)
C(15)	26(1)	24(1)	30(1)	5(1)	-9(1)	0(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for mo_120560lt_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
H(3)	3378	6032	3150	21
H(1A)	10675	6906	4986	38
H(1B)	10409	6548	5645	38
H(1C)	9287	7329	5394	38
H(4)	5412	6550	3875	20
H(9A)	-876	3401	2967	51
H(9B)	-193	2433	2816	51
H(9C)	240	3253	2396	51
H(10)	5876	3586	4477	22
H(11)	7611	4663	4876	22
H(12)	4429	2580	3905	22
H(14A)	803	5156	4100	40
H(14B)	-544	4909	3617	40
H(14C)	171	5896	3648	40
H(15A)	1091	5839	2573	40
H(15B)	198	4896	2547	40
H(15C)	2059	4981	2348	40

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for mo_120560lt_0m.

11. X-ray crystal data of compound 13c

ORTEP diagram of compound 13c. Atomic displacement ellipsoids are drawn

at the 50% probability level

CCDC no. of 13c: 891458

Identification code	mo_120626lt_0m	mo_120626lt_0m			
Empirical formula	C19 H17 N3 O3	C19 H17 N3 O3			
Formula weight	335.36	335.36			
Temperature	100(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic	Monoclinic			
Space group	P 1 21/n 1	P 1 21/n 1			
Unit cell dimensions	a = 11.587(2) Å	<i>α</i> = 90°.			
	b = 10.3387(17) Å	$\beta = 101.378(4)^{\circ}.$			
	c = 14.091(2) Å	$\gamma = 90^{\circ}.$			
Volume	1654.9(5) Å ³	1654.9(5) Å ³			
Z	4	4			
Density (calculated)	1.346 Mg/m ³	1.346 Mg/m ³			
Absorption coefficient	0.093 mm ⁻¹	0.093 mm ⁻¹			

Table 1.	Crystal	data ar	nd structure	refinement	for mo	120626lt	0m.
14010 1.	Crystar	uata ai	ia su acture	rennement	ioi ino_	_12002011_	_0111.

F(000)	704
Crystal size	0.30 x 0.25 x 0.25 mm ³
Theta range for data collection	2.08 to 26.52°.
Index ranges	-14<=h<=14, -11<=k<=12, -17<=l<=17
Reflections collected	11817
Independent reflections	3378 [R(int) = 0.0555]
Completeness to theta = 26.52°	98.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.6285
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3378 / 0 / 228
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0434, $wR2 = 0.1087$
R indices (all data)	R1 = 0.0618, WR2 = 0.1192
Largest diff. peak and hole	0.348 and -0.319 e.Å ⁻³

	х	У	Z	U(eq)
O(1)	4818(1)	1691(1)	5636(1)	30(1)
O(2)	4337(1)	164(1)	6622(1)	33(1)
O(3)	10928(1)	2340(1)	6042(1)	24(1)
N(1)	9185(1)	2274(1)	6556(1)	21(1)
N(2)	9824(1)	930(1)	8421(1)	21(1)
N(3)	11452(1)	79(1)	9299(1)	29(1)
C(1)	3602(1)	1705(2)	5120(1)	35(1)
C(2)	5065(1)	868(2)	6382(1)	23(1)
C(3)	6323(1)	923(2)	6886(1)	21(1)
C(4)	7169(1)	1614(2)	6512(1)	21(1)
C(5)	8349(1)	1605(1)	6984(1)	20(1)
C(6)	10071(1)	1677(2)	6350(1)	20(1)
C(7)	10334(1)	268(2)	6418(1)	21(1)
C(8)	11475(1)	-159(2)	6790(1)	26(1)
C(9)	11698(2)	-1467(2)	6918(1)	32(1)
C(10)	10799(2)	-2363(2)	6667(1)	32(1)
C(11)	6641(1)	250(2)	7750(1)	24(1)
C(12)	7788(1)	304(2)	8258(1)	24(1)
C(13)	8642(1)	973(2)	7880(1)	20(1)
C(14)	10371(1)	-146(2)	8845(1)	26(1)
C(15)	11610(1)	1384(2)	9163(1)	27(1)
C(16)	10627(1)	1930(2)	8625(1)	24(1)
C(17)	10791(1)	3726(2)	5974(1)	29(1)
C(18)	9437(1)	-639(2)	6149(1)	24(1)
C(19)	9669(1)	-1945(2)	6274(1)	29(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for mo_120626lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(2)	1.339(2)
O(1)-C(1)	1.4525(18)
O(2)-C(2)	1.2115(19)
O(3)-C(6)	1.3472(18)
O(3)-C(17)	1.4424(19)
N(1)-C(6)	1.2796(19)
N(1)-C(5)	1.4178(19)
N(2)-C(14)	1.360(2)
N(2)-C(16)	1.383(2)
N(2)-C(13)	1.4306(18)
N(3)-C(14)	1.310(2)
N(3)-C(15)	1.380(2)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(3)	1.492(2)
C(3)-C(11)	1.386(2)
C(3)-C(4)	1.398(2)
C(4)-C(5)	1.398(2)
C(4)-H(4)	0.9500
C(5)-C(13)	1.402(2)
C(6)-C(7)	1.488(2)
C(7)-C(8)	1.394(2)
C(7)-C(18)	1.396(2)
C(8)-C(9)	1.382(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.386(2)
C(9)-H(9)	0.9500
C(10)-C(19)	1.386(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.381(2)
C(11)-H(11)	0.9500

Table 3. Bond lengths [Å] and angles $[\circ]$ for mo_120626lt_0m.

C(12)-C(13)	1.396(2)
C(12)-H(12)	0.9500
C(14)-H(14)	0.9500
C(15)-C(16)	1.360(2)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
С(17)-Н(17А)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-C(19)	1.381(2)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(2)-O(1)-C(1)	115.81(12)
C(6)-O(3)-C(17)	116.64(12)
C(6)-N(1)-C(5)	120.42(13)
C(14)-N(2)-C(16)	106.52(13)
C(14)-N(2)-C(13)	125.05(13)
C(16)-N(2)-C(13)	128.44(13)
C(14)-N(3)-C(15)	104.23(13)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(2)-C(2)-O(1)	123.23(15)
O(2)-C(2)-C(3)	123.95(15)
O(1)-C(2)-C(3)	112.81(13)
C(11)-C(3)-C(4)	120.20(14)
C(11)-C(3)-C(2)	117.68(13)
C(4)-C(3)-C(2)	122.12(14)
C(5)-C(4)-C(3)	120.64(15)

C(5)-C(4)-H(4)	119.7
C(3)-C(4)-H(4)	119.7
C(4)-C(5)-C(13)	118.16(13)
C(4)-C(5)-N(1)	118.69(14)
C(13)-C(5)-N(1)	123.11(13)
N(1)-C(6)-O(3)	120.18(14)
N(1)-C(6)-C(7)	128.49(14)
O(3)-C(6)-C(7)	111.32(12)
C(8)-C(7)-C(18)	119.35(15)
C(8)-C(7)-C(6)	120.10(14)
C(18)-C(7)-C(6)	120.49(13)
C(9)-C(8)-C(7)	119.86(15)
C(9)-C(8)-H(8)	120.1
C(7)-C(8)-H(8)	120.1
C(8)-C(9)-C(10)	120.58(15)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-H(9)	119.7
C(19)-C(10)-C(9)	119.76(16)
C(19)-C(10)-H(10)	120.1
C(9)-C(10)-H(10)	120.1
C(12)-C(11)-C(3)	119.79(14)
C(12)-C(11)-H(11)	120.1
C(3)-C(11)-H(11)	120.1
C(11)-C(12)-C(13)	120.27(15)
C(11)-C(12)-H(12)	119.9
C(13)-C(12)-H(12)	119.9
C(12)-C(13)-C(5)	120.71(14)
C(12)-C(13)-N(2)	117.19(14)
C(5)-C(13)-N(2)	122.04(13)
N(3)-C(14)-N(2)	112.79(15)
N(3)-C(14)-H(14)	123.6
N(2)-C(14)-H(14)	123.6
C(16)-C(15)-N(3)	111.33(15)

C(16)-C(15)-H(15)	124.3
N(3)-C(15)-H(15)	124.3
C(15)-C(16)-N(2)	105.12(15)
C(15)-C(16)-H(16)	127.4
N(2)-C(16)-H(16)	127.4
O(3)-C(17)-H(17A)	109.5
O(3)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
O(3)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(19)-C(18)-C(7)	120.35(15)
C(19)-C(18)-H(18)	119.8
C(7)-C(18)-H(18)	119.8
C(18)-C(19)-C(10)	120.07(15)
С(18)-С(19)-Н(19)	120.0
С(10)-С(19)-Н(19)	120.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	17(1)	31(1)	39(1)	8(1)	2(1)	-1(1)
O(2)	21(1)	25(1)	54(1)	8(1)	8(1)	-5(1)
O(3)	20(1)	19(1)	34(1)	2(1)	11(1)	-3(1)
N(1)	18(1)	17(1)	28(1)	2(1)	6(1)	0(1)
N(2)	19(1)	19(1)	26(1)	0(1)	6(1)	0(1)
N(3)	23(1)	34(1)	30(1)	4(1)	6(1)	4(1)
C(1)	19(1)	39(1)	44(1)	4(1)	-1(1)	0(1)
C(2)	20(1)	17(1)	33(1)	-4(1)	9(1)	0(1)
C(3)	19(1)	15(1)	32(1)	-2(1)	8(1)	0(1)
C(4)	21(1)	16(1)	28(1)	2(1)	7(1)	2(1)
C(5)	20(1)	12(1)	29(1)	0(1)	9(1)	0(1)
C(6)	17(1)	21(1)	23(1)	1(1)	4(1)	-2(1)
C(7)	21(1)	19(1)	24(1)	-2(1)	8(1)	0(1)
C(8)	20(1)	25(1)	33(1)	-4(1)	6(1)	1(1)
C(9)	28(1)	26(1)	40(1)	-2(1)	5(1)	9(1)
C(10)	40(1)	18(1)	39(1)	0(1)	12(1)	6(1)
C(11)	22(1)	18(1)	34(1)	2(1)	12(1)	-2(1)
C(12)	26(1)	19(1)	28(1)	4(1)	10(1)	1(1)
C(13)	19(1)	15(1)	27(1)	-2(1)	6(1)	1(1)
C(14)	25(1)	25(1)	29(1)	4(1)	7(1)	2(1)
C(15)	23(1)	32(1)	27(1)	-3(1)	7(1)	-2(1)
C(16)	22(1)	23(1)	30(1)	-3(1)	8(1)	-2(1)
C(17)	26(1)	18(1)	46(1)	4(1)	14(1)	-3(1)
C(18)	22(1)	22(1)	30(1)	-2(1)	8(1)	0(1)
C(19)	32(1)	20(1)	37(1)	-5(1)	12(1)	-4(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for mo_120626lt_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	х	У	Z	U(eq)
H(1A)	3405	865	4807	53
H(1B)	3498	2386	4627	53
H(1C)	3083	1873	5577	53
H(4)	6940	2095	5931	25
H(8)	12097	448	6957	31
H(9)	12474	-1755	7179	38
H(10)	10957	-3260	6764	38
H(11)	6071	-245	7991	29
H(12)	7997	-116	8867	29
H(14)	10009	-974	8815	31
H(15)	12315	1843	9413	32
H(16)	10516	2809	8430	29
H(17A)	10064	3936	5514	44
H(17B)	11464	4103	5749	44
H(17C)	10750	4078	6612	44
H(18)	8661	-356	5879	29
H(19)	9054	-2557	6091	35

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for mo_120626lt_0m.