Supporting Information

Euryachins A and B, a New Type of Diterpenoids from *Eurya chinensis* with Potent NO Production Inhibitory Activity

Jia-Ling Song, ^{†‡ a,b} Yao Yuan, ^{‡ a,b} Hai-Bo Tan, ^a Jie-Wei Wu,^a Ri-Ming Huang, ^a Heng Li, ^c Zhi-Fang Xu, ^a Ning Na, ^{*c} Sheng-Xiang Qiu^{* a}

^aProgram for Natural Product Chemical Biology, Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of
Sciences, Guangzhou, 510650, People's Republic of China
^bUniversity of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
^c Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, 510650, People's Republic of China

Tel/Fax: +86-20-82179740; nngg20102009@hotmail.com. +86-20-37081190; E-mail: sxqiu@scbg.ac.cn.

Supporting information list

1. Experimental section

General experimental procedures. Plant material. Extraction and isolation. Physical and chemical properties of **1** and **2**. Anti-inflammatory activity bioassay.

2. X-ray crystal data for euryachin A (1)

3. NMR, IR, HRESIMS, UV and CD spectra

- S1. ¹H NMR (500 MHz; CDCl₃) spectrum of euryachin A (1)
- S2. ¹³C NMR (125 MHz; CDCl₃) spectrum of euryachin A (1)
- S3. DEPT-135 (125 MHz; CDCl3) spectrum of euryachin A (1)
- S4. HSQC (CDCl₃) spectrum of euryachin A (1)
- S5. HMBC (CDCl₃) spectrum of euryachin A (1)
- S6. ¹H-¹H COSY (CDCl₃) spectrum of euryachin A (1)
- S7. NOESY (CDCl₃) spectrum of euryachin A (1)
- S8. HRESIMS of euryachin A (1)
- S9. IR spectrum of euryachin A (1)
- S10. UV (CH₃OH) spectra and experimental ECD (in CH₃OH) of euryachin B (1)

S11. ¹H NMR (500 MHz; CD₃OD) spectrum of euryachin B (2)

- S12. ¹³C NMR (125 MHz; CD₃OD) spectrum of euryachin B (2)
- S13. DEPT-135 (125 MHz; CD₃OD) spectrum of euryachin B (2)
- S14. HSQC (CD₃OD) spectrum of euryachin B (2)
- S15. HMBC (CD₃OD) spectrum of euryachin B (2)
- S16. ¹H-¹H COSY (CD₃OD) spectrum of euryachin B (2)
- S17. NOESY (CD₃OD) spectrum of euryachin B (2)
- S18. HRESIMS of euryachin B (2)
- S19. IR spectrum of euryachin B (2)
- S20. UV (CH₃OH) spectra and experimental ECD (in CH₃OH) of euryachin B (2)

1. Experimental section

General experimental procedures. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. UV spectra were recorded in CH₃OH on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer. HR-ESI-MS spectra were recorded on a Bruker Bio TOF IIIQ mass spectrometer. IR spectra were acquired using a Bruker Vertex 33 infrared spectrophotometer (Bruker, Karlsruhe, Germany) with KBr disk. NMR spectra were recorded on a Bruker Advance-500 spectrometer using TMS as an internal standard. All chemical shifts were quoted on the δ scale in ppm using residual solvent as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR, 77.0 ppm for ¹³C NMR; CD₃OD: 3.30 ppm for ¹H NMR, 49.90 ppm for ¹³C NMR). Coupling constants (J) are reported in Hz. ECD spectra were measured with an Anton Paar MCP 500 Chirascan spectrometer. X-ray diffraction experiment was carried out on a Gemini S Ultra (Oxford Diffraction LtD) diffractometer with a CCD area detector using Mo/CuK α X-ray source. All organic solvents used for extraction were of analytical grade (Shanghai Chemical Plant, Shanghai, People's Republic of China). Silica gel (200-300 mesh) (Qingdao Haiyang Chemical Plant, Qingdao, People's Republic of China). MCI gel (CHP20P, 75-150 µm, Mitsubishi Chemical Industries Ltd.), and Sephadex LH-20 gel (Amersham Biosciences) were used for column chromatography. TLC spots were visualized under UV light and by dipping into a solution 5% H₂SO₄ in alcohol followed by heating.

Plant material. Branches of *E. chinensis* R. Br. were collected in Jiangxi, China, in June, 2012 and authorized by Professor Fuwu Xing of South China Botanical Garden. A voucher specimen (No. 201309) has been deposited at the Laboratory of Natural Product Chemistry Biology, South China Botanical Garden (SCBG), CAS, People's Republic of China.

Extraction and isolation. Powdered air-dried branches of *E. chinensis* (50.0 kg) were extracted using 95% ethanol at room temperature and filtered. Then, the filtrate was concentrated under vacuum to afford a crude residue (4.1 kg), which was suspended in H₂O and extracted sequentially with *n*-hexane and EtOAc. The EtOAc-soluble fraction (1.2 kg) was further subjected to silica gel column chromatography (CC) eluted with a gradient solvent mixture of *n*-hexane/acetone (ratio from 100:1 to 1:1) to afford 7 sub-fractions (F-1 \rightarrow F-7). F-4 (237 g) was further separated by silica gel CC eluted with a gradient mixture of CH₂Cl₂/EtOAc to afford six fractions (F-4A \rightarrow F-4F). F-4C (36.5 g) was again fractionated on MCI-silica gel CC using an eluting solvent mixture of CH₃OH/H₂O of decreasing polarity to give 7 fractions (F-4C1 \rightarrow F-4C7). Pure compound 1 (50 mg) was obtained from F-4C1 (4.9 g) using CC with Sephadex LH-20 (183 × 3 cm; CHCl₃/MeOH 1:1 as eluent), followed by recrystallization (CH₃OH). Similarly, F-4E (32.6 g) was fractionated on MCI-silica gel CC using a solvent mixture CH₃OH/H₂O of decreasing polarity to give five fractions (F-4E1 \rightarrow F-4E5). As a result, **2** (20 mg).was purified from F-4E2 (4.6 g) by silica gel CC eluted using a mixture of *n*-hexane/EtOAc (1:2) followed by recrystallization from CH₃OH.

Euryachin A (1): Colorless crystal; $[\alpha]^{20}_{D} = +269.2$ (c. 1.20; CH₃OH); UV (CH₃OH) λ_{max} (log ε) 274.7 (4.03) nm; IR (KBr) ν_{max} 3464, 2953, 2868, 1740, 1690, 1633, 1389, 1195, 991, 816, 639 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) see Table 1 in the manuscript; CD $\Delta \varepsilon$ (*c* 0.13, CH₃OH) + 29.3 (276.2 nm); HR-ESI-MS *m*/*z*_{obsd} 327.1612 [M-H]⁻ (*m*/*z*_{calcd} [C₂₀H₂₄O₄ - H]⁻ = 327.1596).

Euryachin B (2): Colorless crystal; $[\alpha]^{20}_{D} = +91.3$ (*c*. 1.15; CH₃OH); UV (CH₃OH) λ_{max} (log ε) 274.7 (4.12) nm; IR (KBr) v_{max} 2955, 2864, 1681, 1625, 1412, 1275, 932, 817, 734 cm⁻¹; ¹H NMR (CD₃OD, 500 MHz) and ¹³C NMR (CD₃OD, 125 MHz) see Table 1 in the manuscript; CD $\Delta \varepsilon$ (*c* 0.40, CH₃OH) + 20.5 (281.3 nm); HR-ESI-MS *m*/*z* obsd 329.1786 [M-H]⁻ (*m*/*z* calcd [C₂₀H₂₄O₄ – H]⁻ = 329.1753).

Anti-inflammatory activity assay.

Extracellular NO production detection: Murine monocytic RAW264.7 Macrophages (Conservation Genetics Kunming Cell Bank, Kunming Institute of Zoology. CAS, China) were dispensed into 96-well plates (5×10^5 cells/well) containing DMEM medium (Gibco BRL Co., Ltd., Grand Island, NY, USA) with 10% FBS (Gibco BRL Co., Ltd., Grand Island, NY, USA) under a humidified atmosphere of 5% CO₂ at 37 °C. After 24 h preincubation, cells were treated with serial dilutions of compounds **1** and **2**, the maximum concentration being 200 μ M, in the presence of 1 μ g/mL LPS (Sigma-Aldrich Co., Ltd., USA) for 18 h. Each compound was dissolved in DMSO (Sigma-Aldrich Co., Ltd., USA) and further diluted in medium to produce different concentrations. NO production in each well was assessed by adding 100 μ L of Griess reagent (Reagent A & Reagent B, respectively, Beyotime Co., Ltd., Shanghai, China) to 100 μ L of each supernatant [LPS (Sigma)-treated or LPS- and compound-treated cells] in triplicate. After 5 min incubation, the absorbance was measured at 420 nm with a Multiscan Spectrum (TECAN Genios). L-NMMA (N^G-Monomethyl-L-arginine, Monoacetate Salt, Beyotime Co., Ltd., Shanghai, China) was used as a positive control.

Table 1

Compounds	IC ₅₀ (µM) ^a
1	46.09
2	36.96
L-NMMA	36.21

 IC_{50} values (μ M) of 1 and 2 for NO inhibition in LPS-stimulated RAW264.7 cells.

 a IC_{50} values of each compound were expressed as the concentration (μM), which caused 50% inhibition of NO production

Intracellular NO production detection: The intracellular NO level was measured using a NO-sensitive fluorescence probe DAF-FM DA. First, 1×10^5 Raw264.7 macrophage cells (Conservation Genetics Kunming Cell Bank, Kunming Institute of Zoology. CAS, China) per well were grown in triplicate in 96-well plates. Cells were treated with compounds 1 and 2 at different concentrations (0, 5, 10, 20,40 μ g/mL) and LPS (1 μ g/mL) (Sigma-Aldrich Co., Ltd., USA) in 1h increments for 24 h, or were untreated (negative control). Then, removed supernatant and cells were loaded with DAF-FM DA(5 μ M, 100 μ L/well) (Beyotime Co., Ltd., Shanghai, China) at 37 °C for 30 min. Fluorescence values (excitation 495 nm, emission 515 nm) were measured using a

Multimode Microplate Reader (Synergy TM 2, BioTek, Winooski, Vermont, USA).

The inhibitory effects of compounds 1 and 2 on NO overproduction in LPS-stimulated RAW264.7 macrophages were examined to evaluate the anti-inflammatory effect of PNFS. Extracellular NO concentrations were assessed using the Griess method, and intracellular NO concentrations were examined using a DAF-FM DA fluorescence assay. Compounds 1 and 2 (0, 5, 10, 20, 40 μ g/mL) markedly decreased intracellular NO concentrations (P < 0.001, P < 0.001, P < 0.001) (Fig.1). In summary, our experiments showed that compounds 1 and 2 suppressed LPS-stimulated NO overproduction.

Fig. 1 compounds 1 and 2 suppressed NO overproduction in LPS-stimulated RAW264.7 macrophages. A compound 1 decreased LPS-stimulated NO overproduction. B compound 2 reduced LPS-stimulated intracellular NO levels. The first two bars at "0" in Fig. A, B are negative control (without this two compounds and LPS treated) and positive control (without Compounds 1 and 2 but with LPS treated). Data in Fig. A, B were all expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data and the results were F = 121; P < 0.001, F =274; P < 0.001; respectively. Then, data in Fig. A, B were all subjected to Dunnett's Multiple Comparison Test to determine the statistical difference between groups. The P values represented the statistical differences between each group and the corresponding positive control (without Compounds 1 and 2 with LPS treated). *** means P <0.001

2. X-ray crystal data for euryachin A (1)

Crystal data and structure refinement for euryachin A

Identification code	SONGJIALING_43-3B
Empirical formula	C ₈₃ H ₁₁₀ O ₂₀
Formula weight	1427.71
Temperature/K	173.00(10)
Crystal system	orthorhombic
Space group	P212121
Unit cell dimensions	a = 6.27813(14) Å, α = 90.00°
	b = 10.3446(2) Å, β = 90.00°
	c = 27.8319(6) Å, γ = 90.00°
	90.00
	90.00
	90.00
Volume/Å ³	1807.55(7)
Z	1
ρ _{calc} g/cm ³	1.312
µ/mm ⁻¹	0.753
F(000)	768.0
Crystal size/mm ³	0.28 × 0.26 × 0.2
Radiation	CuKα (λ = 1.54184)
θ range for data collection/°	9.12 to 125.4
Index ranges	$-7 \le h \le 4$, $-11 \le k \le 11$, $-32 \le l \le 32$
Reflections collected	14188
Independent reflections	2873 [R _{int} = 0.0305, R _{sigma} = 0.0177]
Data/restraints/parameters	2873/0/252
Goodness-of-fit on F ²	1.093
Final R indexes [I>=2σ (I)]	R ₁ = 0.0365, wR ₂ = 0.0984
Final R indexes [all data]	R ₁ = 0.0369, wR ₂ = 0.0987
Largest diff. peak/hole / e Å-3	0.49/-0.17
Flack parameter	0.1(2)

3. NMR, IR, HRESIMS, UV and CD spectral data:

S2. ¹³C NMR (125 MHz; CDCl₃) spectrum of euryachin A (1)

S4. HSQC (CDCl₃) spectrum of euryachin A (1)

S6. ¹H-¹H COSY (CDCl₃) spectrum of euryachin A (1)

S10. UV (CH₃OH) spectra and experimental ECD (in CH₃OH) of euryachin B (1)

S12. 13 C NMR (125 MHz; CD₃OD) spectrum of euryachin B (2)

S13. DEPT-135 (125 MHz; CD₃OD) spectrum of euryachin B (2)

S15. HMBC (CD₃OD) spectrum of euryachin B (2)

S16. ¹H-¹H COSY (CD₃OD) spectrum of euryachin B (2)

S20. UV (CH₃OH) spectra and experimental ECD (in CH₃OH) of euryachin B (2)