Effect of extraction solvents/techniques on polyphenolic contents and antioxidant potential

of the aerial parts of Nepeta leucophylla and the analysis of their phytoconstituents using RP-

HPLC-DAD and GC-MS

Ajay sharma^{1*}, Damanjit Singh Cannoo¹

¹Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal 148106 (Punjab) India

Email: sharmaajay9981@gmail.com, djs6311@gmail, Fax: 01672-280072, Mob: 91-9779733277

Table of Contents	Page No.
S1: Linear equations and R ² for different standards used to calculate the results of different assays	2
S2: Linear equations, R ² , LOD and LOQ values of différent standards used to calculate the results of different polyphenolic compound by RP-HPLC-DAD analysis:	2
S3: Method used for the quantification of different phenolics using RP-HPLC-DAD	3
S4: Main constituents (>2.50%) detected by GC-MS analysis of chloroform and hexane extracts obtained by different extraction methods	4-5
S5: GC-MS chromatograms of chloroform and hexane extracts obtained by different extraction methods	6-9

Sr.	Name of Assay	Name of Standard and	Linear Equation	R ²	
No.		Concentration			
1	Total Polyphenolic Content (TPC)	Gallic Acid	Y = 9.788x + 0.0137	0.9993	
		(0-150mg/L)			
2	Total Flavonoids Content (TPC)	Rutin Trihydrate	Y = 1.1643x + 0.0018	0.9984	
		(0-300mg/L)			
3	Ferric Reducing Antioxidant Power	Ferrous Sulphate	Y = 4.5682x - 0.0347	0.9993	
5	(FRAP)	(0-300mg/L)	1 - 4.3002X 0.0347	0.5555	
4	Total Antioxidant Capacity (TAC)	Vitamin C	Y = 3.5665x - 0.0503	0.9992	
		(0-300mg/L)			

S1: Linear equations and R² for different standards used to calculate the results of different assays

S2: Linear equations, R², LOD and LOQ values of différent standards used to calculate the results of different polyphenolic compound by RP-HPLC analysis:

Sr. No.	Name of Standard (Conc0.2 – 1 mg/mL)	Linear Equation	R ²	LOQ* (µg/ml)	LOD* (µg/ml)
1	Myricetin	Y = 184.8x - 6.9079	0.9954	2.1	0.69
2	Catechin Hydrate	Y = 114.42x - 1.9269	0.9999	1.67	0.55
3	Chlorogenic acid	Y = 290.08x - 17.903	0.9987	1.58	0.52
4	Rutin trihydrate	Y = 110.36x - 5.5993	0.9916	1.66	0.5
5	Caffeic Acid	Y = 581.4x - 26.194	0.9952	1.01	0.34
6	Syringic Acid	Y = 279.83x - 2.409	0.998	1.05	0.35
7	Vanillic acid	Y = 666.11x - 7.0634	0.9994	0.46	0.15

LOQ and LOD was calculated on the basis of S/N, (for LOQ S/N \geq 10, for LOD \geq 3.3)

s3: Method used for the quantification of different phenolics using RP-HPLC-DAD:

In order to construct the standard curve for quantification of different polyphenolics in plant extracts, the standards and samples were dissolved in methanol (HPLC grade) and then filtered by syringe filter (0.22 µm, Millipore Millex GV, hydrophilic PVDF). A stock solution of different standards (1 mg/mL) and samples (4 mg/mL) were prepared and stored in a deep freezer (-40 °C) for further use. For the quantitative analysis of phenolic compounds, a calibration curve was obtained by injection of known concentrations (0.1 mg/mL to 1mg/ mL i.e. 0.2, 0.4, 0.6, 0.8, 1 mg/mL) of different standard compounds. The different dilutions were done using methanol. LOD and LOQ were also calculated for every standard separately. The peak area for different concentration was calculated from the corresponding chromatogram of different concentration. The linear equation was constructed for each standard by plotting the graph between peak area and respective concentration in excel software.

The results of RP-HPLC analysis was calculated from the linear equation obtained from standard curve as follow:

$$Y = AX \pm B$$

Where, Y refers to the absorbance of the sample, A and B was given in a linear equation (The linear equation was obtained from the curve drawn from area under the peak in different concentrations of the standards). From this the value of X was calculated which was then introduced in another equation:

C = X * V/N

Where, C was the final result e.g. in case of TPC, C was equal to mg of gallic acid equvelant / g of dry plant extract. X was concentration calculated from calibration curve; V was the volume of extract used and N was the weight of plant extract taken in g.

S4: Main constituents (>2.50%) detected by GC-MS analysis of chloroform and hexane extracts obtained by different extraction methods.

Table S4-1. Main constituents (>2.50%) detected by GC-MS analysis of chloroform extracts obtained by different extraction methods

Name of compound	RT			Peak Area (%)			
-	SEM	UAEM	MM	SEM	UAEM	MM	
Linolenic acid	30.890	30.927	30.880	2.82	3.98	Tr	
Abieta-9(11),8(14),12-trien-12-ol	35.064	35.132	35.131	Tr	3.02	3.22	
UI	46.533	46.629	46.629	3.13	10.03	6.08	
Squalene	46.809	46.863	-	4.48	4.37	-	
Long chain hydrocarbon	48.855	48.903	48.898	Tr	3.96	3.77	
Long chain hydrocarbon	50.919	51.021	51.015	3.09	6.75	5.45	
UI	51.489	51.593	51.575	5.57	8.86	12.2	
Long chain hydrocarbon	53.416	53.462	53.465	13.20	11.57	15.10	
Vitamin E	53.859	53.939	-	3.15	Tr	-	
Long chain hydrocarbon	55.475	55.539	55.527	6.20	3.30	4.56	
Stigmast-5-en-3-ol, (3.beta.,24S)	59.389	59.482	-	3.10	Tr	-	
Long chain hydrocarbon	59.813	59.880	59.871	27.52	15.62	26.77	
Long chain hydrocarbon	62.826	62.905	62.910	6.01	3.18	3.49	
Long chain hydrocarbon	64.312	64.391	64.372	11.13	4.19	5.47	

RT- retention time, UI- unidentified, - = not detected, Tr- amount present <2.5%

Name of compound		RT			Peak Area (%)	
-	SEM	UAEM	MM	SEM	UAEM	MM
Hexadecanoic acid, methyl ester	-	-	25.736	-	-	3.65
Hexadecanoic acid	-	26.674	26.740	-	3.48	Tr
Linolenic acid	31.031	30.986	31.018	4.95	5.47	Tr
Abieta-9(11),8(14),12-trien-12-ol	35.086	35.145	35.158	2.61	5.26	Tr
UI	-	46.638	-	-	2.76	-
Squalene	46.811	46.875	46.874	Tr	4.45	Tr
Long chain hydrocarbon	48.863	48.910	48.923	2.50	2.73	3.21
Long chain hydrocarbon	53.491	53.485	53.778	12.63	13.76	15.35
Long chain hydrocarbon	55.512	55.552	55.595	5.57	5.01	3.65
Long chain hydrocarbon	56.326	56.362	56.407	3.11	2.57	4.19
Stigmast-5-en-3-ol, (3.beta.,24S)	59.407	-	-	3.84	-	-
Long chain hydrocarbon	60.020	59.940	60.146	28.97	28.65	32.82
Long chain hydrocarbon	62.907	62.955	63.017	7.49	3.96	4.64
Long chain hydrocarbon	64.432	64.435	64.527	10.85	7.57	7.23

Table S4-2. Main constituents (>2.50%) detected by GC-MS analysis of hexane extracts obtained by different extraction methods

RT- retention time, UI- unidentified, - = not detected, Tr- amount present <2.5%

S5: GC-MS chromatograms of chloroform and hexane extracts obtained by different extraction methods (A) Chloroform extract obtained by SEM (B) Chloroform extract obtained by UAEM (C) Chloroform extract obtained by MM (D) Hexane extract obtained by SEM (E) Hexane extract obtained by UAEM (F) Hexane extract obtained by MM

(A) Chloroform extract obtained by SEM

(C) Chloroform extract obtained by MM

(E) Hexane extract obtained by UAEM

(F) Hexane extract obtained by MM