Electronic Supplementary Information for:

Investigation of oxygen vacancies on Pt, Au modified CeO₂ materials for CO oxidation

Yanjie Zhang,^a Yanyan Zhao,^b Han Zhang,^a Liyuan Zhang,^b Huipeng Ma,^b Peipei Dong,^{*b} Desheng Li,^a Jingjie Yu,^{*a} and Guanying Cao^a

 ^aResearch Institute of Photonics, Dalian Polytechnic University, Dalian 116034, P.R. China. E-mail: yujingjie@dlpu.edu.cn
^bDalian Medical University, Dalian 116044, P.R. China. E-mail: dongpeipei@dmu.edu.cn

Fig. S1 HRTEM images of Pt-CeO₂ (a) and Au-CeO₂ (b) samples. These images were obtained on a JEM-2000EM JEOL. Before microscopy examination, the sample was suspended in ethanol with an ultrasonic dispersion for around 10 minutes and then a drop of the solution was put onto a copper grid coated with a thin holey carbon film. As can be seen, no metal particles could be found despite our careful observation. Probably, the Pt or Au particles were highly distributed and too small to be detected on both samples. On the other hand, we can find that the particle size of CeO₂ support was around 10 nm, which was in accordance with XRD detects.

Fig. S2 Pt_(4f) and Au_(4f) XPS spectra of fresh and reduced Pt-CeO₂ and Au-CeO₂ samples. X-ray photoelectron spectra (XPS) were determined on a VGESCALAB 210 apparatus to obtain the surface compositions and the binding energies of the catalysts. Mg Ka radiation at an energy scale calibrated versus adventitious carbon (C_{1s} peak at 284.5 eV) was used. The sample was fresh or reduced at 400 °C for 2 h before the characterization. As can be seen, before or after H₂ reduction treatment, the binding energies of Pt or Au were not changed and exhibited a state of metallic species (Pt_{4f7/2}: 70.9 eV, Au_{4f7/2}: 83.5 eV).

Fig. S3 CO₂ adsorption heat with the coverage on Pt-CeO₂ and Au-CeO₂ materials. This experiment was carried out with a BT 2.15 heat-fluxcalorimeter¹. Prior to the measurement, the sample was reduced with pure H₂ at 400 °C for 2 h and then outgassed for 0.5 h under high vacuum. The microcalorimetric data were collected by sequentially introducing small doses (1~10 μ mol) of CO₂ onto the sample until it became saturated. The using of CO₂ as probe gas was due to its formation of carbonates on CeO₂ materials,² thus the differential heat can indicate the adsorption strength of carbonates on these two samples.

References:

- L. Li, X. Wang, X. Zhao, M. Zheng, R. Cheng, L. Zhou and T. Zhang, *Thermochim. Acta*, 2005, 434, 119.
- 2. C. Binet, M. Daturi and J. Lavalley, Catal. Today, 1999, 50, 207.