Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

### Supplementary material

#### Section S1. Description of in-house Python script.

The algorithm for selecting the representative protein-ligand complexes is as follows (flowchart in Figure S1): having protein conformations  $p_1, p_2, ..., p_m$ , and ligands  $l_1, l_2, ..., l_n$ , there are a total of  $m \times n$  complexes, where  $p_i l_j$ denotes ligand  $l_j$  docked into protein structure  $p_i$ . Subsets of the total *m* protein structures were defined with a reduced dimension *k*, where  $k \le m$ . For each *k* value, m!/(k!(m-k)!) subsets of *k* distinct conformations were generated. Subsets were tidily explored from the ones grouped in the smallest dimension (k = 1) to the longest one (k = m).

Each subset grouped in a dimension k has k complexes per ligand from which a single representative is chosen. This selection is performed using a naive approach. First, the scoring values computed either by docking or MM/GBSA of all  $k \times n$  complexes in the subset are fitted to the experimental activities using the linear least squares (LLS) fitting technique. Next, the best  $p_i l_j$  combinations are determined by optimizing the overall fitting (higher  $R^2$ ) within the subset until all ligands are represented by a single complex. For the best combination, the higher  $R^2$  is denoted as  $R^2_k$ . When k = 1,  $R^2_1$  is defined as  $R^2_{maxl}$ ; when k > 1,  $R^2_{maxk}$  is  $R^2_{max(k-1)}$  if  $R^2_{max(k-1)} > R^2_k - 0.05$ , otherwise,  $R^2_{maxk}$  is  $R^2_k$  (Figure S1). These conditions guarantee that higher values of  $R^2_{max}$  with small k dimension are kept; i.e., correlation models that contain few X-ray crystallographic structures are prioritized, and more X-ray crystals are considered if they considerably increase  $R^2_{max}$ .

#### Figure S1. Flowchart of *in-house* Python script



**Figure S2.** RMSD values (in Å) of the residues A) Phe282, B) Arg288, C) Phe363, D) Tyr473, for different PPAR $\gamma$  crystallographic structures. RMSD < 2.0 Å are represented in blue, RMSD ≥ 2.0 Å and < 3.0 Å are represented in yellow, and RMSD ≥ 3.0 Å are represented in red. Conformations of each residue are represented to the right, colored according to their orientation.

|      | 2ATH | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2VV2 | 2XKW | 3B3K | 3CDS | 3GBK | 3HO0 | 3HOD | 3NOA | 3QT0 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2F4B | 0.92 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      | _    |
| 2I4J | 0.94 | 0.74 | 0.00 |      |      |      |      |      |      |      |      |      |      | Π    |      |      |
| 2PRG | 0.90 | 0.31 | 0.75 | 0.00 |      |      |      |      |      |      |      | 20   |      |      |      |      |
| 2Q59 | 1.10 | 0.72 | 0.35 | 0.78 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |
| 2VV0 | 0.88 | 0.82 | 0.35 | 0.88 | 0.51 | 0.00 |      |      |      |      |      |      |      |      |      |      |
| 2VV1 | 1.28 | 0.68 | 0.77 | 0.76 | 0.83 | 0.77 | 0.00 |      |      |      |      |      | V/   |      |      |      |
| 2VV2 | 0.75 | 1.05 | 0.78 | 1.04 | 0.81 | 0.60 | 1.20 | 0.00 |      |      |      |      |      | X    |      |      |
| 2XKW | 0.33 | 0.95 | 0.81 | 0.92 | 0.95 | 0.71 | 1.24 | 0.46 | 0.00 |      |      |      |      |      |      |      |
| 3B3K | 4.11 | 4.59 | 4.25 | 4.54 | 4.35 | 4.10 | 4.55 | 3.83 | 3.95 | 0.00 |      |      | 1    | I    | I    |      |
| 3CDS | 3.92 | 4.45 | 4.08 | 4.40 | 4.16 | 3.93 | 4.45 | 3.60 | 3.74 | 0.67 | 0.00 |      |      |      |      |      |
| 3GBK | 0.55 | 0.73 | 0.70 | 0.67 | 0.73 | 0.69 | 1.11 | 0.50 | 0.41 | 4.14 | 3.93 | 0.00 |      |      |      |      |
| 3HO0 | 3.96 | 4.47 | 4.09 | 4.40 | 4.17 | 3.94 | 4.43 | 3.62 | 3.78 | 0.68 | 0.45 | 3.95 | 0.00 |      |      |      |
| 3HOD | 3.84 | 4.36 | 3.99 | 4.29 | 4.07 | 3.84 | 4.34 | 3.51 | 3.66 | 0.78 | 0.53 | 3.83 | 0.19 | 0.00 |      |      |
| 3NOA | 0.43 | 0.66 | 0.99 | 0.67 | 1.08 | 0.98 | 1.16 | 0.93 | 0.62 | 4.41 | 4.24 | 0.60 | 4.27 | 4.15 | 0.00 |      |
| 3QT0 | 0.76 | 0.65 | 1.11 | 0.72 | 1.18 | 1.05 | 0.98 | 1.12 | 0.92 | 4.56 | 4.42 | 0.86 | 4.43 | 4.31 | 0.46 | 0.00 |

### $A_{(Phe282)}$

## **B** (Arg288)

|      | 2ATH | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2VV2 | 2XKW | 3B3K | 3CDS | 3GBK | 3H00 | 3HOD | 3NOA | 3QT0  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
| 2F4B | 0.40 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      | 00   | I<br> |
| 2I4J | 0.81 | 0.98 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |       |
| 2PRG | 0.74 | 0.55 | 0.96 | 0.00 |      |      |      |      |      |      |      |      |      | т 👬  |      |       |
| 2Q59 | 1.69 | 1.69 | 1.41 | 1.43 | 0.00 |      |      |      |      |      |      |      |      | 1    |      |       |
| 2VV0 | 1.57 | 1.60 | 1.48 | 1.64 | 1.74 | 0.00 |      |      |      |      |      |      |      |      |      | _     |
| 2VV1 | 0.20 | 0.28 | 0.85 | 0.65 | 1.65 | 1.56 | 0.00 |      |      |      |      |      |      |      | 1    |       |
| 2VV2 | 0.33 | 0.50 | 0.65 | 0.78 | 1.66 | 1.56 | 0.39 | 0.00 |      |      |      |      |      |      |      | _     |
| 2XKW | 0.81 | 0.83 | 0.63 | 0.99 | 1.63 | 1.57 | 0.82 | 0.52 | 0.00 |      |      |      |      |      |      |       |
| 3B3K | 3.66 | 3.67 | 3.66 | 3.61 | 3.15 | 3.25 | 3.62 | 3.67 | 3.71 | 0.00 |      |      |      |      | II N |       |
| 3CDS | 4.03 | 4.04 | 4.04 | 3.94 | 3.41 | 3.61 | 3.99 | 4.08 | 4.12 | 0.61 | 0.00 |      |      |      |      | _     |
| 3GBK | 0.70 | 0.42 | 1.00 | 0.64 | 1.74 | 1.67 | 0.61 | 0.61 | 0.67 | 3.80 | 4.18 | 0.00 |      |      |      |       |
| 3H00 | 3.88 | 3.90 | 3.88 | 3.81 | 3.29 | 3.45 | 3.85 | 3.92 | 3.96 | 0.46 | 0.31 | 4.04 | 0.00 |      |      |       |
| 3HOD | 4.32 | 4.34 | 4.36 | 4.28 | 3.77 | 3.93 | 4.28 | 4.38 | 4.44 | 0.91 | 0.51 | 4.50 | 0.62 | 0.00 |      |       |
| 3NOA | 0.28 | 0.55 | 0.60 | 0.79 | 1.59 | 1.52 | 0.36 | 0.22 | 0.62 | 3.61 | 4.00 | 0.73 | 3.85 | 4.29 | 0.00 |       |
| 3QT0 | 1.01 | 0.91 | 1.27 | 1.02 | 1.45 | 1.66 | 0.97 | 1.06 | 1.20 | 3.72 | 4.07 | 0.96 | 3.92 | 4.37 | 1.07 | 0.00  |

### **C** (Phe363)

|      | 2ATH | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2VV2 | 2XKW | 3B3K | 3CDS | 3GBK | 3HO0 | 3HOD       | 3NOA              | 3QT0         |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------------|-------------------|--------------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |      |      |      |      | 1    | 1          | I                 |              |
| 2F4B | 1.38 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |            |                   |              |
| 2I4J | 1.46 | 0.39 | 0.00 |      |      |      |      |      |      |      |      |      | ттт  | F          |                   | _            |
| 2PRG | 4.58 | 4.57 | 4.53 | 0.00 |      |      |      |      |      |      |      |      |      |            |                   |              |
| 2Q59 | 1.89 | 0.88 | 0.81 | 4.30 | 0.00 |      |      |      |      |      |      |      |      |            | Т                 | T.           |
| 2VV0 | 1.95 | 0.90 | 0.74 | 4.37 | 0.45 | 0.00 |      |      |      |      |      | Te   |      |            |                   |              |
| 2VV1 | 1.72 | 0.78 | 0.76 | 4.24 | 0.29 | 0.59 | 0.00 |      |      |      |      |      |      | <b>*</b> ` | $\langle \rangle$ |              |
| 2VV2 | 3.93 | 4.23 | 4.16 | 1.74 | 4.11 | 4.18 | 4.00 | 0.00 |      |      |      |      | T    |            | <u>III</u>        | $\mathbf{N}$ |
| 2XKW | 4.57 | 4.54 | 4.48 | 0.45 | 4.25 | 4.29 | 4.21 | 1.79 | 0.00 |      |      |      | - 1  |            |                   | <b>3</b> -   |
| 3B3K | 1.32 | 0.45 | 0.37 | 4.39 | 0.95 | 0.91 | 0.80 | 3.95 | 4.36 | 0.00 |      |      | 1    | 1          | 1                 | -            |
| 3CDS | 1.30 | 0.24 | 0.41 | 4.59 | 0.93 | 0.96 | 0.80 | 4.22 | 4.57 | 0.40 | 0.00 |      |      |            |                   |              |
| 3GBK | 1.23 | 0.33 | 0.66 | 4.64 | 1.01 | 1.09 | 0.89 | 4.28 | 4.63 | 0.65 | 0.36 | 0.00 |      |            |                   |              |
| 3HO0 | 1.61 | 0.33 | 0.39 | 4.54 | 0.80 | 0.75 | 0.77 | 4.26 | 4.51 | 0.53 | 0.39 | 0.56 | 0.00 |            |                   |              |
| 3HOD | 1.44 | 0.27 | 0.36 | 4.56 | 0.86 | 0.81 | 0.79 | 4.23 | 4.53 | 0.44 | 0.27 | 0.43 | 0.21 | 0.00       |                   |              |
| 3NOA | 2.28 | 2.49 | 2.57 | 3.72 | 2.27 | 2.49 | 2.14 | 3.41 | 3.73 | 2.47 | 2.46 | 2.38 | 2.57 | 2.51       | 0.00              |              |
| 3QT0 | 4.59 | 4.60 | 4.57 | 0.87 | 4.34 | 4.39 | 4.26 | 1.98 | 1.08 | 4.41 | 4.61 | 4.66 | 4.58 | 4.59       | 3.78              | 0.00         |

### **D** (Tyr473)

|      | 2ATH | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2VV2 | 2XKW | 3B3K | 3CDS | 3GBK | 3HO0 | 3HOD     | 3NOA | 3QT0 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |
| 2F4B | 1.85 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |          |      |      |
| 2I4J | 1.70 | 1.22 | 0.00 |      |      |      |      |      |      |      |      |      |      |          | Ι    |      |
| 2PRG | 2.07 | 0.54 | 1.53 | 0.00 |      |      |      |      |      |      |      |      | т    |          |      | _    |
| 2Q59 | 1.96 | 0.94 | 0.96 | 1.26 | 0.00 |      |      |      |      |      |      |      |      |          |      |      |
| 2VV0 | 1.54 | 1.31 | 0.87 | 1.69 | 0.73 | 0.00 |      |      |      |      |      | 17   | -4   |          |      |      |
| 2VV1 | 1.52 | 1.27 | 1.00 | 1.64 | 0.70 | 0.20 | 0.00 |      |      |      |      |      |      | <b>E</b> |      |      |
| 2VV2 | 1.44 | 1.32 | 1.02 | 1.67 | 0.83 | 0.34 | 0.29 | 0.00 |      |      |      |      |      |          |      |      |
| 2XKW | 1.55 | 1.33 | 1.51 | 1.63 | 1.01 | 0.89 | 0.71 | 0.74 | 0.00 |      |      |      |      |          | Π    |      |
| ЗВЗК | 1.72 | 1.21 | 0.51 | 1.51 | 0.67 | 0.72 | 0.80 | 0.88 | 1.29 | 0.00 |      |      | I    | 1        | 1    |      |
| 3CDS | 1.93 | 1.39 | 0.43 | 1.68 | 0.86 | 0.91 | 1.02 | 1.07 | 1.55 | 0.35 | 0.00 |      |      |          |      |      |
| 3GBK | 1.77 | 0.35 | 0.94 | 0.79 | 0.83 | 1.10 | 1.11 | 1.17 | 1.33 | 1.01 | 1.15 | 0.00 |      |          |      |      |
| 3HO0 | 1.41 | 1.29 | 0.47 | 1.57 | 0.99 | 0.78 | 0.87 | 0.82 | 1.35 | 0.52 | 0.61 | 1.07 | 0.00 |          |      |      |
| 3HOD | 1.57 | 1.33 | 0.44 | 1.66 | 0.84 | 0.62 | 0.72 | 0.73 | 1.24 | 0.39 | 0.44 | 1.10 | 0.36 | 0.00     |      |      |
| 3NOA | 1.92 | 2.57 | 2.25 | 2.76 | 2.49 | 2.12 | 2.14 | 2.10 | 2.24 | 2.28 | 2.40 | 2.44 | 2.11 | 2.20     | 0.00 |      |
| 3QT0 | 2.21 | 1.54 | 2.50 | 1.57 | 1.94 | 2.16 | 2.00 | 2.05 | 1.50 | 2.34 | 2.61 | 1.81 | 2.39 | 2.40     | 3.02 | 0.00 |

**Figure S3.** RMSD values (in Å) of the residues Phe282 (top left), Arg288 (top right), Phe363 (bottom left), Tyr473 (bottom right), for different PPAR $\gamma$  crystallographic structures involved in the best correlation models for set 1 (A), set 2 (B), and set 3 (C). RMSD < 2.0 Å are represented in blue, RMSD ≥ 2.0 Å and < 3.0 Å are represented in yellow, and RMSD ≥ 3.0 Å are represented in red.

## A) (Set 1, Glide XP)

| Phe282 |      |      |      |      |      |      |      |      |      |
|--------|------|------|------|------|------|------|------|------|------|
|        | 2F4B | 214J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2XKW | 3HOD | 3NOA |
| 2F4B   | 0.00 |      |      |      |      |      |      |      |      |
| 214J   | 0.74 | 0.00 |      |      |      |      |      |      |      |
| 2PRG   | 0.31 | 0.75 | 0.00 |      |      |      |      |      |      |
| 2Q59   | 0.72 | 0.35 | 0.78 | 0.00 |      |      |      |      |      |
| 2VV0   | 0.82 | 0.35 | 0.88 | 0.51 | 0.00 |      |      |      |      |
| 2VV1   | 0.68 | 0.77 | 0.76 | 0.83 | 0.77 | 0.00 |      |      |      |
| 2XKW   | 0.95 | 0.81 | 0.92 | 0.95 | 0.71 | 1.24 | 0.00 | _    |      |
| 3HOD   | 4.36 | 3.99 | 4.29 | 4.07 | 3.84 | 4.34 | 3.66 | 0.00 | _    |
| 3NOA   | 0.66 | 0.99 | 0.67 | 1.08 | 0.98 | 1.16 | 0.62 | 4.15 | 0.00 |

| Arg288 |      |      |      |      |      |      |      |      |      |
|--------|------|------|------|------|------|------|------|------|------|
|        | 2F4B | 214J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2XKW | 3HOD | 3NOA |
| 2F4B   | 0.00 |      |      |      |      |      |      |      |      |
| 214J   | 0.98 | 0.00 |      |      |      |      |      |      |      |
| 2PRG   | 0.55 | 0.96 | 0.00 |      |      |      |      |      |      |
| 2Q59   | 1.69 | 1.41 | 1.43 | 0.00 |      |      |      |      |      |
| 2VV0   | 1.60 | 1.48 | 1.64 | 1.74 | 0.00 |      |      |      |      |
| 2VV1   | 0.28 | 0.85 | 0.65 | 1.65 | 1.56 | 0.00 |      |      |      |
| 2XKW   | 0.83 | 0.63 | 0.99 | 1.63 | 1.57 | 0.82 | 0.00 |      |      |
| 3HOD   | 4.34 | 4.36 | 4.28 | 3.77 | 3.93 | 4.28 | 4.44 | 0.00 |      |
| 3NOA   | 0.55 | 0.60 | 0.79 | 1.59 | 1.52 | 0.36 | 0.62 | 4.29 | 0.00 |

#### Phe363

|      | 2F4B | 214J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2XKW | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|------|------|
| 2F4B | 0.00 |      |      |      |      |      |      |      |      |
| 214J | 0.39 | 0.00 |      |      |      |      |      |      |      |
| 2PRG | 4.57 | 4.53 | 0.00 |      |      |      |      |      |      |
| 2Q59 | 0.88 | 0.81 | 4.30 | 0.00 |      |      |      |      |      |
| 2VV0 | 0.90 | 0.74 | 4.37 | 0.45 | 0.00 |      |      |      |      |
| 2VV1 | 0.78 | 0.76 | 4.24 | 0.29 | 0.59 | 0.00 |      |      |      |
| 2XKW | 4.54 | 4.48 | 0.45 | 4.25 | 4.29 | 4.21 | 0.00 | _    |      |
| 3HOD | 0.27 | 0.36 | 4.56 | 0.86 | 0.81 | 0.79 | 4.53 | 0.00 |      |
| 3NOA | 2.49 | 2.57 | 3.72 | 2.27 | 2.49 | 2.14 | 3.73 | 2.51 | 0.00 |

#### Tyr473

|      | 2F4B | 214J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2XKW | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|------|------|
| 2F4B | 0.00 |      |      |      |      |      |      |      |      |
| 214J | 1.22 | 0.00 |      |      |      |      |      |      |      |
| 2PRG | 0.54 | 1.53 | 0.00 |      |      |      |      |      |      |
| 2Q59 | 0.94 | 0.96 | 1.26 | 0.00 |      |      |      |      |      |
| 2VV0 | 1.31 | 0.87 | 1.69 | 0.73 | 0.00 |      |      |      |      |
| 2VV1 | 1.27 | 1.00 | 1.64 | 0.70 | 0.20 | 0.00 |      |      |      |
| 2XKW | 1.33 | 1.51 | 1.63 | 1.01 | 0.89 | 0.71 | 0.00 |      |      |
| 3HOD | 1.33 | 0.44 | 1.66 | 0.84 | 0.62 | 0.72 | 1.24 | 0.00 |      |
| 3NOA | 2.57 | 2.25 | 2.76 | 2.49 | 2.12 | 2.14 | 2.24 | 2.20 | 0.00 |

## **B)** (Set2, MMGBSA XP)

#### Phe282

|      | 214J | 2PRG | 2Q59 | 2VV1 | 2VV2 | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|
| 214J | 0.00 |      |      |      |      |      |      |
| 2PRG | 0.75 | 0.00 |      |      |      |      |      |
| 2Q59 | 0.35 | 0.78 | 0.00 |      |      |      |      |
| 2VV1 | 0.77 | 0.76 | 0.83 | 0.00 |      |      |      |
| 2VV2 | 0.78 | 1.04 | 0.81 | 1.20 | 0.00 | _    |      |
| 3HOD | 3.99 | 4.29 | 4.07 | 4.34 | 3.51 | 0.00 |      |
| 3NOA | 0.99 | 0.67 | 1.08 | 1.16 | 0.93 | 4.15 | 0.00 |

#### Arg288

| / " 5200 |      |      |      |      |      |      |      |
|----------|------|------|------|------|------|------|------|
|          | 214J | 2PRG | 2Q59 | 2VV1 | 2VV2 | 3HOD | 3NOA |
| 214J     | 0.00 |      |      |      |      |      |      |
| 2PRG     | 0.96 | 0.00 |      |      |      |      |      |
| 2Q59     | 1.41 | 1.43 | 0.00 |      |      |      |      |
| 2VV1     | 0.85 | 0.65 | 1.65 | 0.00 |      |      |      |
| 2VV2     | 0.65 | 0.78 | 1.66 | 0.39 | 0.00 |      |      |
| 3HOD     | 4.36 | 4.28 | 3.77 | 4.28 | 4.38 | 0.00 |      |
| 3NOA     | 0.60 | 0.79 | 1.59 | 0.36 | 0.22 | 4.29 | 0.00 |

### Phe363

|      | 214J | 2PRG | 2Q59 | 2VV1 | 2VV2 | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|
| 214J | 0.00 |      |      |      |      |      |      |
| 2PRG | 4.53 | 0.00 | _    |      |      |      |      |
| 2Q59 | 0.81 | 4.30 | 0.00 |      |      |      |      |
| 2VV1 | 0.76 | 4.24 | 0.29 | 0.00 |      |      |      |
| 2VV2 | 4.16 | 1.74 | 4.11 | 4.00 | 0.00 |      |      |
| 3HOD | 0.36 | 4.56 | 0.86 | 0.79 | 4.23 | 0.00 |      |
| 3NOA | 2.57 | 3.72 | 2.27 | 2.14 | 3.41 | 2.51 | 0.00 |

### Tyr473

|      | 214J | 2PRG | 2Q59 | 2VV1 | 2VV2 | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|
| 214J | 0.00 |      |      |      |      |      |      |
| 2PRG | 1.53 | 0.00 |      |      |      |      |      |
| 2Q59 | 0.96 | 1.26 | 0.00 |      |      |      |      |
| 2VV1 | 1.00 | 1.64 | 0.70 | 0.00 |      |      |      |
| 2VV2 | 1.02 | 1.67 | 0.83 | 0.29 | 0.00 |      |      |
| 3HOD | 0.44 | 1.66 | 0.84 | 0.72 | 0.73 | 0.00 |      |
| 3NOA | 2.25 | 2.76 | 2.49 | 2.14 | 2.10 | 2.20 | 0.00 |

| Phe282 |      |      |      |      |      |      |      |      |
|--------|------|------|------|------|------|------|------|------|
|        | 2ATH | 2PRG | 2Q59 | 2VV0 | 2VV1 | 3B3K | 3CDS | 3QT0 |
| 2ATH   | 0.00 |      |      |      |      |      |      |      |
| 2PRG   | 0.90 | 0.00 |      |      |      |      |      |      |
| 2Q59   | 1.10 | 0.78 | 0.00 |      |      |      |      |      |
| 2VV0   | 0.88 | 0.88 | 0.51 | 0.00 |      |      |      |      |
| 2VV1   | 1.28 | 0.76 | 0.83 | 0.77 | 0.00 |      |      |      |
| 3B3K   | 4.11 | 4.54 | 4.35 | 4.10 | 4.55 | 0.00 |      |      |
| 3CDS   | 3.92 | 4.40 | 4.16 | 3.93 | 4.45 | 0.67 | 0.00 |      |
| 3QT0   | 0.76 | 0.72 | 1.18 | 1.05 | 0.98 | 4.56 | 4.42 | 0.00 |

| Arg288 |      |      |      |      |      |      |      |      |
|--------|------|------|------|------|------|------|------|------|
|        | 2ATH | 2PRG | 2Q59 | 2VV0 | 2VV1 | 3B3K | 3CDS | 3QT0 |
| 2ATH   | 0.00 |      |      |      |      |      |      |      |
| 2PRG   | 0.74 | 0.00 |      |      |      |      |      |      |
| 2Q59   | 1.69 | 1.43 | 0.00 |      |      |      |      |      |
| 2VV0   | 1.57 | 1.64 | 1.74 | 0.00 |      |      |      |      |
| 2VV1   | 0.20 | 0.65 | 1.65 | 1.56 | 0.00 |      |      |      |
| 3B3K   | 3.66 | 3.61 | 3.15 | 3.25 | 3.62 | 0.00 |      |      |
| 3CDS   | 4.03 | 3.94 | 3.41 | 3.61 | 3.99 | 0.61 | 0.00 |      |
| 3QT0   | 1.01 | 1.02 | 1.45 | 1.66 | 0.97 | 3.72 | 4.07 | 0.00 |

#### Phe363

|      | 2ATH | 2PRG | 2Q59 | 2VV0 | 2VV1 | 3B3K | 3CDS | 3QT0 |
|------|------|------|------|------|------|------|------|------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |
| 2PRG | 4.58 | 0.00 |      |      |      |      |      |      |
| 2Q59 | 1.89 | 4.30 | 0.00 |      |      |      |      |      |
| 2VV0 | 1.95 | 4.37 | 0.45 | 0.00 |      |      |      |      |
| 2VV1 | 1.72 | 4.24 | 0.29 | 0.59 | 0.00 |      |      |      |
| 3B3K | 1.32 | 4.39 | 0.95 | 0.91 | 0.80 | 0.00 |      |      |
| 3CDS | 1.30 | 4.59 | 0.93 | 0.96 | 0.80 | 0.40 | 0.00 |      |
| 3QT0 | 4.59 | 0.87 | 4.34 | 4.39 | 4.26 | 4.41 | 4.61 | 0.00 |

Tyr473

|      | 2ATH | 2PRG | 2Q59 | 2VV0 | 2VV1 | 3B3K | 3CDS | 3QT0 |
|------|------|------|------|------|------|------|------|------|
| ATH  | 0.00 |      |      |      |      |      |      |      |
| PRG  | 2.07 | 0.00 |      |      |      |      |      |      |
| Q59  | 1.96 | 1.26 | 0.00 |      |      |      |      |      |
| .VV0 | 1.54 | 1.69 | 0.73 | 0.00 |      |      |      |      |
| VV1  | 1.52 | 1.64 | 0.70 | 0.20 | 0.00 |      |      |      |
| ВЗК  | 1.72 | 1.51 | 0.67 | 0.72 | 0.80 | 0.00 |      |      |
| CDS  | 1.93 | 1.68 | 0.86 | 0.91 | 1.02 | 0.35 | 0.00 |      |
| QT0  | 2.21 | 1.57 | 1.94 | 2.16 | 2.00 | 2.34 | 2.61 | 0.00 |

**Figure S4.** (A) RMSD values (in Å) for Phe282- Phe363 pair, for different PPAR $\gamma$  crystallographic structures. RMSD  $\leq$  1.61 Å are represented in light blue, RMSD  $\geq$  1.64 Å and  $\leq$  1.95 Å are represented in dark blue, RMSD  $\geq$  2.5 Å and  $\leq$  2.73 Å are represented in yellow, RMSD  $\geq$  2.77 Å and  $\leq$  3.35 Å are represented in red, RMSD  $\geq$  3.43 Å and  $\leq$  3.58 Å are represented in pink, and RMSD  $\geq$  3.89 Å are represented in purple. (B) Examples of conformational pairs compared in A observed for each defined color.

# A)

|      | 2ATH | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2VV2 | 2XKW | 3B3K | 3CDS | 3GBK | 3H00 | 3HOD | 3NOA | 3QT0 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2F4B | 1.17 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2I4J | 1.23 | 0.59 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2PRG | 3.30 | 3.24 | 3.25 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |      |
| 2Q59 | 1.54 | 0.80 | 0.62 | 3.09 | 0.00 |      |      |      |      |      |      |      |      |      |      |      |
| 2VV0 | 1.51 | 0.86 | 0.58 | 3.15 | 0.48 | 0.00 |      |      |      |      |      |      |      |      |      |      |
| 2VV1 | 1.52 | 0.73 | 0.77 | 3.05 | 0.62 | 0.69 | 0.00 |      |      |      |      |      |      |      |      |      |
| 2VV2 | 2.83 | 3.08 | 2.99 | 1.43 | 2.96 | 2.99 | 2.95 | 0.00 |      |      |      |      |      |      |      |      |
| 2XKW | 3.24 | 3.28 | 3.22 | 0.72 | 3.08 | 3.08 | 3.10 | 1.31 | 0.00 |      |      |      |      |      |      |      |
| 3B3K | 3.05 | 3.26 | 3.02 | 4.46 | 3.14 | 2.97 | 3.27 | 3.89 | 4.16 | 0.00 |      |      |      |      |      |      |
| 3CDS | 2.92 | 3.15 | 2.90 | 4.50 | 3.01 | 2.86 | 3.20 | 3.92 | 4.18 | 0.56 | 0.00 |      |      |      |      |      |
| 3GBK | 0.95 | 0.57 | 0.68 | 3.32 | 0.88 | 0.91 | 1.00 | 3.05 | 3.29 | 2.96 | 2.79 | 0.00 |      |      |      |      |
| 3HO0 | 3.02 | 3.17 | 2.90 | 4.47 | 3.00 | 2.84 | 3.18 | 3.95 | 4.16 | 0.61 | 0.42 | 2.82 | 0.00 |      |      |      |
| 3HOD | 2.90 | 3.09 | 2.83 | 4.43 | 2.94 | 2.77 | 3.12 | 3.89 | 4.12 | 0.63 | 0.42 | 2.73 | 0.20 | 0.00 |      |      |
| 3NOA | 1.64 | 1.82 | 1.95 | 2.68 | 1.78 | 1.89 | 1.72 | 2.50 | 2.67 | 3.58 | 3.47 | 1.74 | 3.52 | 3.43 | 0.00 |      |
| 3QT0 | 3.29 | 3.28 | 3.33 | 0.80 | 3.18 | 3.19 | 3.09 | 1.61 | 1.01 | 4.48 | 4.52 | 3.35 | 4.51 | 4.45 | 2.69 | 0.00 |



**Figure S5.** RMSD values (in Å) of the Phe282- Phe363 pair, for different PPAR $\gamma$  crystallographic structures involved in the best correlation models for set 1 (A), set 2 (B), and set 3 (C). RMSD  $\leq$  1.61 Å are represented in light blue, RMSD  $\geq$  1.64 Å and  $\leq$  1.95 Å are represented in dark blue, RMSD  $\geq$  2.5 Å and  $\leq$  2.73 Å are represented in yellow, RMSD  $\geq$  2.77 Å and  $\leq$  3.35 Å are represented in red, RMSD  $\geq$  3.43 Å and  $\leq$  3.58 Å are represented in pink, and RMSD  $\geq$  3.89 Å are represented in purple.

|      | 2F4B | 2I4J | 2PRG | 2Q59 | 2VV0 | 2VV1 | 2XKW | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|------|------|
| 2F4B | 0.00 |      |      |      |      |      |      |      |      |
| 2I4J | 0.59 | 0.00 |      |      |      |      |      |      |      |
| 2PRG | 3.24 | 3.25 | 0.00 |      |      |      |      |      |      |
| 2Q59 | 0.80 | 0.62 | 3.09 | 0.00 |      |      |      |      |      |
| 2VV0 | 0.86 | 0.58 | 3.15 | 0.48 | 0.00 |      |      |      |      |
| 2VV1 | 0.73 | 0.77 | 3.05 | 0.62 | 0.69 | 0.00 |      |      |      |
| 2XKW | 3.28 | 3.22 | 0.72 | 3.08 | 3.08 | 3.10 | 0.00 |      |      |
| 3HOD | 3.09 | 2.83 | 4.43 | 2.94 | 2.77 | 3.12 | 4.12 | 0.00 |      |
| 3NOA | 1.82 | 1.95 | 2.68 | 1.78 | 1.89 | 1.72 | 2.67 | 3.43 | 0.00 |

### A) (Set 1, MMGBSA XP)

## B) (Set2, MMGBSA XP)

|      | 2I4J | 2PRG | 2Q59 | 2VV1 | 2VV2 | 3HOD | 3NOA |
|------|------|------|------|------|------|------|------|
| 2I4J | 0.00 |      |      |      |      |      |      |
| 2PRG | 3.25 | 0.00 |      |      |      |      |      |
| 2Q59 | 0.62 | 3.09 | 0.00 |      |      |      |      |
| 2VV1 | 0.77 | 3.05 | 0.62 | 0.00 |      |      |      |
| 2VV2 | 2.99 | 1.43 | 2.96 | 2.95 | 0.00 |      |      |
| 3HOD | 2.83 | 4.43 | 2.94 | 3.12 | 3.89 | 0.00 |      |
| 3NOA | 1.95 | 2.68 | 1.78 | 1.72 | 2.50 | 3.43 | 0.00 |

## **C)** (Set3, Glide SP)

|      | 2ATH | 2PRG | 2Q59 | 2VV0 | 2VV1 | 3B3K | 3CDS | 3QT0 |
|------|------|------|------|------|------|------|------|------|
| 2ATH | 0.00 |      |      |      |      |      |      |      |
| 2PRG | 3.30 | 0.00 |      |      |      |      |      |      |
| 2Q59 | 1.54 | 3.09 | 0.00 |      |      |      |      |      |
| 2VV0 | 1.51 | 3.15 | 0.48 | 0.00 |      |      |      |      |
| 2VV1 | 1.52 | 3.05 | 0.62 | 0.69 | 0.00 |      |      |      |
| 3B3K | 3.05 | 4.46 | 3.14 | 2.97 | 3.27 | 0.00 |      |      |
| 3CDS | 2.92 | 4.50 | 3.01 | 2.86 | 3.20 | 0.56 | 0.00 |      |
| 3QT0 | 3.29 | 0.80 | 3.18 | 3.19 | 3.09 | 4.48 | 4.52 | 0.00 |