Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information for Publication

Ultrafast Single-Droplet Bouncing Actuator with Electrostatic Force on

Superhydrophobic Electrodes

Seulah Lee,‡^a Sanggeun Lee,‡^a Hyunseok Hwang,^b Juree Hong,^a Soonil Lee,^a Jaehong Lee,^a

Youngcheol Chae**b and Taeyoon Lee*a

^aNanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei

University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

^bMixed-Signal IC Laboratory, School of Electrical and Electronic Engineering, Yonsei

University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

* Corresponding author:

Tel: +82 2 2123 5767

Fax: +82 2 313 2879

E-mail address: taeyoon.lee@yonsei.ac.kr

** Corresponding author:

Tel: +82 2 2123 2866

Fax: +82 2 313 2879

E-mail address: ychae@yonsei.ac.kr

§ These authors equally contributed to this work

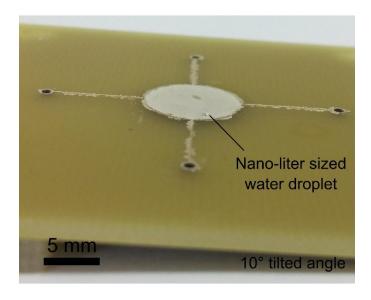


Figure S1. Photograph of the nano-liter sized water droplet on the superhydrophobic electrode with a tilted angle of 10° .

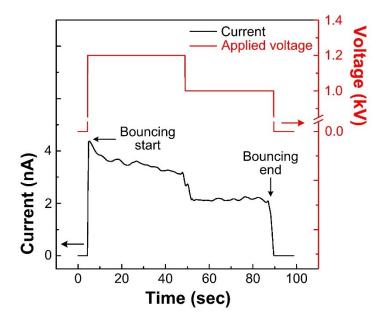


Figure S2. The electrical current signal of a $\sim 1 \mu L$ droplet of PEDOT:PSS solution during bouncing motion varying the applied voltage at 1.2 kV and 1 kV obtained from the electrometer.

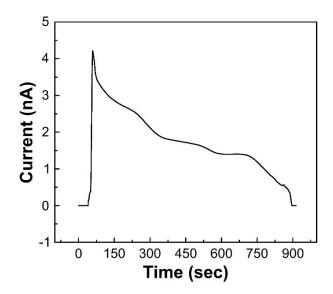


Figure S3. The current of a $\sim 1 \mu L$ water droplet during bouncing motion was measured at the constant applied voltage of 1 kV until the droplet was completely evaporated.