Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016







Figure S3. <sup>1</sup>H NMR spectrum of dihydrazinium NATF (4)



Figure S5. <sup>1</sup>H NMR spectrum of dihydroxylammonium NATF (5)



Figure S7. <sup>1</sup>H NMR spectrum of bis(guanidinium) NATF (6)



Figure S9. <sup>1</sup>H NMR spectrum of bis(aminoguanidinium) NATF (7)



Figure S11. <sup>1</sup>H NMR spectrum of bis(diaminoguanidinium) NATF (8)



Figure S13. <sup>1</sup>H NMR spectrum of bis(triaminoguanidinium) NATF (9)



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S14. <sup>13</sup>C NMR spectrum of bis(triaminoguanidinium) NATF (9)

## 2. Crystallographic data

|                                 | 5                          |
|---------------------------------|----------------------------|
| CCDC number                     | 1476973                    |
| Empirical formula               | $C_{3}H_{8}N_{10}O_{5}$    |
| Mw                              | 264.19                     |
| Crystal system                  | Triclinic                  |
| Space group                     | P -1                       |
| $a[\text{\AA}]$                 | 7.2173(13)                 |
| $b[\text{\AA}]$                 | 8.1190(14)                 |
| c[Å]                            | 9.0665(16)                 |
| $\alpha[\degree]$               | 84.202(3)                  |
| $\beta[\degree]$                | 71.566(3)                  |
| γ[°]                            | 73.613(3)                  |
| V[Å <sup>3</sup> ]              | 483.50(15)                 |
| Ζ                               | 2                          |
| T[K]                            | 293(2)                     |
| λ[Å]                            | 0.71073                    |
| Density[mg m <sup>-3</sup> ]    | 1.815                      |
| $\mu$ [mm <sup>-1</sup> ]       | 0.17                       |
| F(000)                          | 272                        |
| Crystal size[mm <sup>-3</sup> ] | 0.21×0.17×0.11             |
| $\theta$ range[°]               | 2.368-25.999               |
| Index ranges                    | -4≤h≤8                     |
|                                 | -9≤k≤9                     |
|                                 | -10 <u>≤</u> 1 <u>≤</u> 11 |
| Reflections collected           | 2890                       |
| Independent reflections         | 1885 [R(int)=0.0152]       |
|                                 |                            |

| Data/retraints/parameters | 1885/0/196 |
|---------------------------|------------|
| GOF                       | 1.057      |
| $R[F^2 > 2\sigma(F^2)]$   | 0.0339     |
| $wR(F^2)^{[b]}$           | 0.0886     |

[a] These data can be obtained free of charge from The Cambridge Cry-tallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

[b] w =  $1/[\sigma^2(F_o^2) + (0.0473P)^2 + 0.3662P]$ , where  $P = (F_o^2 + 2F_c^2)/3$ 

Table S2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for salt **5**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|       | Х       | у        | Z       | U(eq) |
|-------|---------|----------|---------|-------|
| N(1)  | 1186(2) | -625(2)  | 6396(1) | 25(1) |
| N(2)  | 2211(2) | 151(2)   | 5226(1) | 27(1) |
| N(3)  | 884(2)  | 2901(2)  | 6571(2) | 31(1) |
| N(4)  | 2673(2) | 4375(2)  | 4639(2) | 32(1) |
| N(5)  | 5469(2) | 3293(2)  | 1694(1) | 29(1) |
| N(6)  | 6651(2) | 2318(2)  | 468(2)  | 32(1) |
| N(7)  | 6401(2) | 769(2)   | 718(2)  | 33(1) |
| N(8)  | 5051(2) | 686(2)   | 2115(1) | 31(1) |
| N(9)  | 6268(2) | 2481(2)  | 7234(2) | 29(1) |
| N(10) | 824(2)  | 2594(2)  | -54(2)  | 32(1) |
| O(1)  | 1297(2) | 4475(1)  | 6089(1) | 35(1) |
| O(2)  | 1421(2) | -2203(1) | 6195(1) | 35(1) |
| O(3)  | 46(2)   | 62(1)    | 7648(1) | 36(1) |
| O(4)  | 4342(2) | 3559(2)  | 7872(2) | 43(1) |
| O(5)  | 410(2)  | 3670(2)  | 1186(1) | 43(1) |
| C(1)  | 1996(2) | 1865(2)  | 5413(2) | 24(1) |
| C(2)  | 3109(2) | 2804(2)  | 4202(2) | 24(1) |
| C(3)  | 4517(2) | 2253(2)  | 2683(2) | 24(1) |

| N(1)-O(3)      | 1.2468(16) |
|----------------|------------|
| N(1)-O(2)      | 1.2683(16) |
| N(1)-N(2)      | 1.3039(17) |
| N(2)-C(1)      | 1.3776(18) |
| N(3)-C(1)      | 1.3110(18) |
| N(3)-O(1)      | 1.3902(17) |
| N(4)-C(2)      | 1.2962(19) |
| N(4)-O(1)      | 1.3683(17) |
| N(5)-C(3)      | 1.3316(19) |
| N(5)-N(6)      | 1.3367(17) |
| N(6)-N(7)      | 1.3077(18) |
| N(7)-N(8)      | 1.3408(18) |
| N(8)-C(3)      | 1.3274(18) |
| N(9)-O(4)      | 1.3934(17) |
| N(9)-H(9A)     | 0.93(2)    |
| N(9)-H(9B)     | 0.86(2)    |
| N(9)-H(9C)     | 0.89(2)    |
| N(10)-O(5)     | 1.3990(17) |
| N(10)-H(10A)   | 0.91(2)    |
| N(10)-H(10B)   | 0.90(3)    |
| N(10)-H(10C)   | 0.94(2)    |
| O(4)-H(4)      | 0.83(3)    |
| O(5)-H(5)      | 0.87(3)    |
| C(1)-C(2)      | 1.432(2)   |
| C(2)-C(3)      | 1.454(2)   |
|                |            |
| O(3)-N(1)-O(2) | 119.80(12) |
| O(3)-N(1)-N(2) | 125.18(12) |
| O(2)-N(1)-N(2) | 115.03(11) |
| N(1)-N(2)-C(1) | 116.42(12) |
| C(1)-N(3)-O(1) | 104.85(11) |
| C(2)-N(4)-O(1) | 106.00(12) |
| C(3)-N(5)-N(6) | 104.91(12) |
| N(7)-N(6)-N(5) | 109.19(12) |
| N(6)-N(7)-N(8) | 109.74(12) |
| C(3)-N(8)-N(7) | 104.50(12) |

Table S3. Bond lengths [Å] and angles [°] for salt 5.

| O(4)-N(9)-H(9A)     | 106.9(12)  |
|---------------------|------------|
| O(4)-N(9)-H(9B)     | 111.3(15)  |
| H(9A)-N(9)-H(9B)    | 114(2)     |
| O(4)-N(9)-H(9C)     | 105.2(13)  |
| H(9A)-N(9)-H(9C)    | 107.3(18)  |
| H(9B)-N(9)-H(9C)    | 112(2)     |
| O(5)-N(10)-H(10A)   | 113.0(14)  |
| O(5)-N(10)-H(10B)   | 107.7(16)  |
| H(10A)-N(10)-H(10B) | 108(2)     |
| O(5)-N(10)-H(10C)   | 107.2(13)  |
| H(10A)-N(10)-H(10C) | 109.4(19)  |
| H(10B)-N(10)-H(10C) | 111(2)     |
| N(4)-O(1)-N(3)      | 111.30(10) |
| N(9)-O(4)-H(4)      | 104.8(16)  |
| N(10)-O(5)-H(5)     | 102.7(16)  |
| N(3)-C(1)-N(2)      | 131.13(13) |
| N(3)-C(1)-C(2)      | 108.78(12) |
| N(2)-C(1)-C(2)      | 120.09(12) |
| N(4)-C(2)-C(1)      | 109.07(13) |
| N(4)-C(2)-C(3)      | 120.67(13) |
| C(1)-C(2)-C(3)      | 130.26(13) |
| N(8)-C(3)-N(5)      | 111.66(13) |
| N(8)-C(3)-C(2)      | 125.60(13) |
| N(5)-C(3)-C(2)      | 122.73(13) |
|                     |            |

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| N(1)  | 30(1)           | 22(1)           | 21(1)           | 1(1)            | -5(1)           | -8(1)           |
| N(2)  | 35(1)           | 22(1)           | 21(1)           | -1(1)           | 0(1)            | -11(1)          |
| N(3)  | 40(1)           | 24(1)           | 24(1)           | -3(1)           | 0(1)            | -12(1)          |
| N(4)  | 40(1)           | 24(1)           | 25(1)           | -4(1)           | 1(1)            | -11(1)          |
| N(5)  | 32(1)           | 25(1)           | 26(1)           | -2(1)           | 1(1)            | -10(1)          |
| N(6)  | 34(1)           | 31(1)           | 26(1)           | -2(1)           | 1(1)            | -10(1)          |
| N(7)  | 37(1)           | 30(1)           | 26(1)           | -6(1)           | 2(1)            | -11(1)          |
| N(8)  | 36(1)           | 26(1)           | 25(1)           | -4(1)           | 1(1)            | -11(1)          |
| N(9)  | 31(1)           | 25(1)           | 27(1)           | -1(1)           | -2(1)           | -8(1)           |
| N(10) | 38(1)           | 27(1)           | 25(1)           | -2(1)           | 1(1)            | -11(1)          |
| O(1)  | 49(1)           | 23(1)           | 26(1)           | -7(1)           | 3(1)            | -12(1)          |
| O(2)  | 51(1)           | 21(1)           | 30(1)           | 0(1)            | -3(1)           | -14(1)          |
| O(3)  | 42(1)           | 31(1)           | 24(1)           | -3(1)           | 6(1)            | -10(1)          |
| O(4)  | 29(1)           | 25(1)           | 65(1)           | -9(1)           | 4(1)            | -9(1)           |
| O(5)  | 71(1)           | 33(1)           | 24(1)           | -2(1)           | -2(1)           | -24(1)          |
| C(1)  | 27(1)           | 23(1)           | 20(1)           | -2(1)           | -4(1)           | -8(1)           |
| C(2)  | 28(1)           | 23(1)           | 23(1)           | -1(1)           | -6(1)           | -8(1)           |
| C(3)  | 27(1)           | 23(1)           | 21(1)           | -1(1)           | -5(1)           | -9(1)           |

Table S4. Anisotropic displacement parameters $(Å^2x \ 10^3)$  for salt 5.The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$ 

|        | Х        | У        | Z        | U(eq) |
|--------|----------|----------|----------|-------|
| H(4)   | 4540(30) | 4510(30) | 7950(30) | 59(6) |
| H(5)   | -120(40) | 3090(30) | 1990(30) | 64(7) |
| H(9A)  | 7000(30) | 2450(30) | 7920(20) | 49(6) |
| H(10A) | 1530(30) | 1500(30) | 90(30)   | 56(6) |
| H(9B)  | 6830(30) | 2810(30) | 6310(30) | 59(6) |
| H(10B) | 1560(40) | 3040(30) | -910(30) | 79(8) |
| H(9C)  | 6080(30) | 1440(30) | 7250(20) | 49(6) |
| H(10C) | -430(40) | 2580(30) | -150(30) | 59(6) |

Table S5. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for salt 5.

Table S6. Torsion angles [°] for salt **5**.

| O(3)-N(1)-N(2)-C(1) | 0.0(2)      |
|---------------------|-------------|
| O(2)-N(1)-N(2)-C(1) | -179.62(12) |
| C(3)-N(5)-N(6)-N(7) | 0.28(16)    |
| N(5)-N(6)-N(7)-N(8) | -0.07(17)   |
| N(6)-N(7)-N(8)-C(3) | -0.17(16)   |
| C(2)-N(4)-O(1)-N(3) | 0.65(16)    |
| C(1)-N(3)-O(1)-N(4) | -0.44(16)   |
| O(1)-N(3)-C(1)-N(2) | -179.91(14) |
| O(1)-N(3)-C(1)-C(2) | 0.07(16)    |
| N(1)-N(2)-C(1)-N(3) | -1.7(2)     |
| N(1)-N(2)-C(1)-C(2) | 178.34(12)  |
| O(1)-N(4)-C(2)-C(1) | -0.59(16)   |
| O(1)-N(4)-C(2)-C(3) | 178.82(12)  |
| N(3)-C(1)-C(2)-N(4) | 0.34(18)    |
| N(2)-C(1)-C(2)-N(4) | -179.69(13) |
| N(3)-C(1)-C(2)-C(3) | -178.99(14) |
| N(2)-C(1)-C(2)-C(3) | 1.0(2)      |
| N(7)-N(8)-C(3)-N(5) | 0.35(17)    |
| N(7)-N(8)-C(3)-C(2) | -178.34(13) |
| N(6)-N(5)-C(3)-N(8) | -0.40(17)   |
| N(6)-N(5)-C(3)-C(2) | 178.34(13)  |
| N(4)-C(2)-C(3)-N(8) | -179.27(14) |
| C(1)-C(2)-C(3)-N(8) | 0.0(2)      |
| N(4)-C(2)-C(3)-N(5) | 2.2(2)      |
| C(1)-C(2)-C(3)-N(5) | -178.56(14) |

| Table S7 H | vdrogen | bonds | for | salt | 5 [Å | and | °] |
|------------|---------|-------|-----|------|------|-----|----|

| D-HA               | d(D-H)  | d(HA)   | d(DA)      | <(DHA)    |
|--------------------|---------|---------|------------|-----------|
| N(10)-H(10C)N(6)#1 | 0.94(2) | 2.07(2) | 2.967(2)   | 159.2(19) |
| N(9)-H(9C)N(8)#2   | 0.89(2) | 2.07(2) | 2.930(2)   | 162.7(19) |
| N(9)-H(9C)N(2)#2   | 0.89(2) | 2.48(2) | 2.9724(18) | 115.2(16) |
| N(10)-H(10B)O(4)#3 | 0.90(3) | 2.10(3) | 2.8986(19) | 148(2)    |
| N(10)-H(10B)N(3)#3 | 0.90(3) | 2.50(2) | 3.032(2)   | 118(2)    |
| N(9)-H(9B)O(2)#2   | 0.86(2) | 2.24(2) | 3.0238(18) | 150(2)    |
| N(9)-H(9B)N(4)#4   | 0.86(2) | 2.44(2) | 3.0638(19) | 129.6(19) |
| N(10)-H(10A)O(3)#5 | 0.91(2) | 2.44(2) | 2.9576(19) | 116.7(17) |
| N(10)-H(10A)N(7)#6 | 0.91(2) | 2.05(2) | 2.883(2)   | 152(2)    |
| N(9)-H(9A)O(3)#7   | 0.93(2) | 2.45(2) | 2.9847(19) | 116.4(15) |
| N(9)-H(9A)N(6)#8   | 0.93(2) | 2.24(2) | 3.018(2)   | 141.0(17) |
| O(5)-H(5)O(3)#5    | 0.87(3) | 2.53(3) | 3.1783(17) | 131.9(19) |
| O(5)-H(5)O(2)#5    | 0.87(3) | 1.81(3) | 2.6715(16) | 171(2)    |
| O(5)-H(5)N(1)#5    | 0.87(3) | 2.51(3) | 3.3407(17) | 160(2)    |
| O(4)-H(4)N(5)#4    | 0.83(3) | 1.85(3) | 2.6721(18) | 171(2)    |
| O(4)-H(4)N(5)#4    | 0.83(3) | 1.85(3) | 2.6721(18) | 171(2)    |
| O(5)-H(5)N(1)#5    | 0.87(3) | 2.51(3) | 3.3407(17) | 160(2)    |
| O(5)-H(5)O(2)#5    | 0.87(3) | 1.81(3) | 2.6715(16) | 171(2)    |
| O(5)-H(5)O(3)#5    | 0.87(3) | 2.53(3) | 3.1783(17) | 131.9(19) |
| N(9)-H(9A)N(6)#8   | 0.93(2) | 2.24(2) | 3.018(2)   | 141.0(17) |
| N(9)-H(9A)O(3)#7   | 0.93(2) | 2.45(2) | 2.9847(19) | 116.4(15) |
| N(10)-H(10A)N(7)#6 | 0.91(2) | 2.05(2) | 2.883(2)   | 152(2)    |
| N(10)-H(10A)O(3)#5 | 0.91(2) | 2.44(2) | 2.9576(19) | 116.7(17) |
| N(9)-H(9B)N(4)#4   | 0.86(2) | 2.44(2) | 3.0638(19) | 129.6(19) |
| N(9)-H(9B)O(2)#2   | 0.86(2) | 2.24(2) | 3.0238(18) | 150(2)    |
| N(10)-H(10B)N(3)#3 | 0.90(3) | 2.50(2) | 3.032(2)   | 118(2)    |
| N(10)-H(10B)O(4)#3 | 0.90(3) | 2.10(3) | 2.8986(19) | 148(2)    |
| N(9)-H(9C)N(2)#2   | 0.89(2) | 2.48(2) | 2.9724(18) | 115.2(16) |
| N(9)-H(9C)N(8)#2   | 0.89(2) | 2.07(2) | 2.930(2)   | 162.7(19) |
| N(10)-H(10C)N(6)#1 | 0.94(2) | 2.07(2) | 2.967(2)   | 159.2(19) |

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+1,-y,-z+1 #3 x,y,z-1 #4 -x+1,-y+1,-z+1 #5 -x,-y,-z+1 #6 -x+1,-y,-z #7 x+1,y,z #8 x,y,z+1

## 3. Ab Initio computational data

| Table S8 | Ab | Initio | computational | data |
|----------|----|--------|---------------|------|
|----------|----|--------|---------------|------|

| Compounds                                                                                                        | $E_0$        | ZPE       | $H_{\mathrm{T}}$ | HOF                   |
|------------------------------------------------------------------------------------------------------------------|--------------|-----------|------------------|-----------------------|
|                                                                                                                  | (Hartree)    | (Hartree) | (Hartree)        | (kJ/mol)              |
| N O N                                                                                                            | -261.532452  | 0.045697  | 0.004418         | 196.75 <sup>[i]</sup> |
| $CH_4$                                                                                                           | -40.3984857  | 0.044793  | 0.003812         | -74.6 <sup>[ii]</sup> |
| NH <sub>3</sub>                                                                                                  | -56.4341763  | 0.034372  | 0.003818         | -45.9[2]              |
| CH <sub>3</sub> NH <sub>2</sub>                                                                                  | -95.6318759  | 0.064032  | 0.004369         | -23.0[2]              |
| NH <sub>2</sub> NO <sub>2</sub>                                                                                  | -260.5478787 | 0.039257  | 0.003356         | -6.1 <sup>[iii]</sup> |
| Tetrazole                                                                                                        | -257.7256749 | 0.046855  | 0.00443          | 333.2 <sup>[iv]</sup> |
| $O_2 N - N H$<br>N - N H<br>N - N<br>$O_2 N - N H$                                                               | -777.48901   | 0.092337  | 0.011604         | 635.04                |
| $O_2 N - N \xrightarrow{\bigcirc} N \xrightarrow{N} N \xrightarrow{N} N$<br>$O_2 N - N \xrightarrow{\bigcirc} N$ | -776.3585889 | 0.065737  | 0.011197         | 472.1                 |

<sup>a</sup> Total energy ( $E_0$ ) calculated by B3LYP/6-31+G\*\*/MP2/6-311++G\*\* method (Hartree/Particle); <sup>b</sup> Zero-point correction (ZPE) (Hartree/Particle); <sup>c</sup> Values of thermal correction ( $H_T$ ) (Hartree/Particle); <sup>d</sup> Heat of formation (HOT) (kJ/mol).

Calculations were carried out by using the Gaussian 09 (Revision E.01) suite of programs.<sup>[4]</sup> The geometric optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the  $6-31+G^*$  basis set, and single-point energies were calculated at the MP2(full)/ $6-311++G^*$  level. All of the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.



Figure S15. Born-Haber cycle for the formation for energetic salts

Based on the Born-Haber energy cycle (Figure 5), the heat of formation of a salt can be simplified according to Equation (1), where  $\Delta H_L$  is the lattice energy of the salt.

 $\Delta H_{\rm f}^{\rm o}(\text{ionic salt}, 298\text{K}) = \Delta H_{\rm f}^{\rm o}(\text{cation}, 298\text{K}) + \Delta H_{\rm f}^{\rm o}(\text{anion}, 298\text{K}) - \Delta H_{\rm L}$ (1)

The  $\Delta H_{\rm L}$  value could be predicted by the formula suggested by Jenkins et al [Eq. (2)], <sup>[5]</sup> where

 $U_{POT}$  is the lattice potential energy and nM and nX depend on the nature of the ions M<sup>p+</sup>and X<sup>q-</sup>, respectively, and are equal to three for monoatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions.

 $\Delta H_{\rm L} = U_{\rm POT} + [p(n_{\rm M}/2-2) + q(n_{\rm X}/2-2)]RT$ <sup>(2)</sup>

The equation for the lattice potential energy,  $U_{POT}$ , takes the form of Equation (3), where  $\rho_m$  is the density (g cm<sup>-3</sup>),  $M_m$  is the chemical formula mass of the ionic material (g), and the coefficients  $\gamma$  (kJ<sup>-1</sup>mol<sup>-1</sup>cm) and  $\delta$  (kJ<sup>-1</sup>mol<sup>-1</sup>) are assigned literature values. <sup>[5]</sup>

$$U_{\rm POT} \,(\rm kJ^{-1}mol^{-1}) = \gamma \,(\rho_{\rm m}/Mm)^{1/3} + \delta$$
 (3)

## 4. Detonation performances calculation

Detonation pressure (*P*) and detonation velocity (*D*) were calculation according to the Kamlet-Jacobs equations<sup>[v]</sup>.

$$D = 1.01(N M^{1/2} Q^{1/2})^{1/2} (1 + 1.30\rho)$$
(4)

$$P = 1.558\rho^2 \overline{M} \,{}^{1/2} Q^{1/2} \tag{5}$$

where each term in eqs 4 and 5 is defined as follows: *D*, the detonation velocity (km s<sup>-1</sup>); *P*, the detonation pressure (GPa); *N*, the moles of detonation gases per gram explosive;  $\overline{M}$ , the average molecular weight of these gases (g mol<sup>-1</sup>); *Q*, the heat of detonation (J g<sup>-1</sup>); and  $\rho$ , the loaded density of explosives (g cm<sup>-3</sup>). The measured density was used for the calculation here.

## Ref:

i Wang R, Guo Y, Zeng Z, et al. Chem. Eur. J., 2009, 15, 2625-2634.

ii Eur. J. Inorg. Chem., 2008, 2560-2568.

iii Wang K, Parrish D A, Shreeve J M. Chem. Eur. J., 2011, 17, 14485-14492.

iv W. Zhu, C. Zhang, T. Wei, H. Xiao, Struct. Chem., 2011, 22, 149-159.

v (a) M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 23-35; (b) M. J. Kamlet, J. E. Ablard, J.

*Chem. Phys.* **1968**, *48*, 36-42; (c) M. J. Kamlet , C. Dicknison, *J. Chem. Phys.* **1968**, *48*, 43-49. (d) H. Gao, C. Ye, C. Piekarski, J. M. Shreeve, J. Phys. Chem. C **2007**, 111, 10718-10731.