Supporting Information

Highly luminescent N-doped carbon quantum dots from lemon juice with porphyrin-like structures surrounded by graphitic network for sensing applications

Tapas Kumar Mondal^a, Abhisek Gupta^a, Bikash Kumar Shaw^a, Supriya Mondal^{a,b}, Uttam Kumar Ghorai^c and Shyamal K. Saha^a*

E-mail: cnssks@iacs.res.in

*aDepartment of Materials Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India

^b Department of Physics, P.R Thakur Govt.College,Thakurnagar,Gaighata, North 24 parganas - 743287, India

^c Department of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur math, Howrah-711202, India

Table of contents in Supporting Information:

- 1. Synthesis procedure of exsitu NCQD solution.
- 2. Figure S1: pH dependent PL spectra of NCQD.
- 3. Figure S2: Time dependent PL spectra of NCQD.
- 4. Figure S3: Probable scheme of dynamic PL quenching.
- 5. Figure S4: PL lifetime data of NCQD and Fe³⁺-NCQD samples.
- 6. Figure S5: High resolution XPS peaks for Fe $2p_{3/2}$ and Fe $2p_{1/2}$.

7. Figure S6: PL quenching efficiency of NCQD toward different metal ions and different metal in presence of Fe^{3+} ions at 140 μ M.

- 8. Figure S7: High resolution de-convoluted XPS peaks for N-1s of Fe (III)-NCQD.
- 9. Figure S8: PL quenching of different metal ions- NCQD samples.

10. Figure S9: Excitation dependent PL spectra of exsitu NCQD in solution.

11. Figure S10: Fluorescence quenching of exsitu NCQD after gradual addition of different concentration of Fe^{3+} solution.

12. Figure S11: Temperature dependent PL spectra of exsitu NCQD film at 375nm excitation.

13. Figure S12: Optimized structure of NCQD core.

14. Figure S13: Optimized structure of magnesium (II) incorporated ring of NCQD core.

15. Figure S14: Optimized structure of calcium (II) incorporated ring of NCQD core.

16. Figure S15: Optimized structure of sodium (I) incorporated ring of NCQD core.

17. Figure S16: Optimized structure of cadmium (II) incorporated ring of NCQD core.

18. Figure S17: Optimized structure of zinc (II) incorporated ring of NCQD core.

- 19. Figure S18: Optimized structure of manganese (II) incorporated ring of NCQD core.
- 20. Figure S19: Optimized structure of Copper (II) incorporated ring of NCQD core.

21. Figure S20: Optimized structure of Mercury (II) incorporated ring of NCQD core.

22. **Figure S21:** (a) Zeta potential of NCQD, (b) Zeta potential of Fe(II)-NCQD,(c) Zeta potential of Fe(III)-NCQD.

23. **Table S1:** Stabilization energies of bare and ion incorporated NCQD core with their optimized geometrical parameters:

24. Table S2: Relative standard deviations (RSD) of various metal ions:

1. Synthesis procedure of exsitu NCQD:

0.5g citric acid and 0.11g ascorbic acid were dissolved in 20ml distilled water and maintained pH-8 using ammonia then the mixture was transferred into autoclave and take it at 180°C for 6 hours. After the reaction, brown coloured solution was filtered through 0.22µm Millipore filter papers and dialysed through dialysis tube (1KDa) for 24 hours.

Figure S1: pH dependent PL spectra of NCQD

Figure S2: Time dependent PL spectra of NCQD

Figure S3: Probable scheme of dynamic PL quenching

Figure S4: PL lifetime data of NCQD and Fe³⁺-NCQD samples

Figure S5: High resolution XPS peaks for Fe $2p_{3/2}$ and Fe $2p_{1/2}$

Figure S6: PL quenching efficiency of NCQD toward different metal ions and different metal in presence of Fe^{3+} ions at 140 μM

Figure S7: High resolution de-convoluted XPS peaks for N-1s of Fe (III)-NCQD

Figure S8: PL quenching of different metal ions- NCQD samples

Figure S9: Excitation dependent PL spectra of exsitu NCQD in solution

Figure S10: Fluorescence quenching of exsitu NCQD after gradual addition of different concentration of Fe³⁺ solution

Figure S11: Temperature dependent PL spectra of exsitu NCQD film at 375nm excitation

Figure S12: Optimized structure of NCQD core

Figure S13: Optimized structure of magnesium (II) incorporated ring of NCQD core

Figure S14: Optimized structure of calcium (II) incorporated ring of NCQD core

Figure S15: Optimized structure of sodium (I) incorporated ring of NCQD core

Figure S16: Optimized structure of cadmium (II) incorporated ring of NCQD core

Figure S17: Optimized structure of zinc (II) incorporated ring of NCQD core

Figure S18: Optimized structure of manganese (II) incorporated ring of NCQD core

Figure S19: Optimized structure of Copper (II) incorporated ring of NCQD core

Figure S20: Optimized structure of Mercury (II) incorporated ring of NCQD core

Figure S21: (a) Zeta potential of NCQD,(b) Zeta potential of Fe(II)-NCQD,(c) Zeta potential of Fe(III)-NCQD

Table S1: Basis sets and stabilization energies of bare and ion incorporated NCQD core with their optimized geometrical parameters:

Compounds	Basis set	Stabilization Energy (Kcal/mole)	Metal-N length (Å)
NCQD core		4.47	
With Fe	cc-pVDZ	5.73	1.960
Hg	lanl2dz	4.51	2.268
Cu	cc-pVDZ	4.66	2.004
Zn	cc-pVDZ	4.58	2.035
Cd	lanl2dz	4.51	2.197
Mn	cc-pVDZ	4.52	2.055
Ca	cc-pVDZ	4.61	2.122
Mg	cc-pVDZ	4.58	2.189
Na	cc-pVDZ	4.49	2.135

Table S2: Relative standard deviations (RSD) of various metal ions:

ions	RSD value	ions	RSD value
Fe	77.025±1.25%	Pb	$3.042 \pm 0.83\%$
Нg	31.6 ±2.89%	Ni	3.039 ± 0.71%
Cd	17.1 ±3.02%	Mg	$3.04 \pm 0.67\%$
Cu	10.231 ±0.77%	Al	$2.027 \pm 0.73\%$
Zn	9.057 ±1.70%	Mn	$2.015 \pm 0.46\%$
Со	8.1575±1.37%	Na	$2.0155 \pm 0.35\%$
Ag	8.1173 ±0.88%		