Supporting information for

A highly efficient and selective coumarin based fluorescent probe for colorimetric detection of Fe³⁺ and fluorescence dual sensing of Zn²⁺ and Cu²⁺

Nayan Roy, Surjatapa Nath, Abhijit Dutta, Paritosh Mondal, Pradip C. Paul, T. Sanjoy Singh*

Department of Chemistry, Assam University, Silchar, Assam – 788 011, India

Figure Captions:

Figure S1:	Plot of log ((I-I _o) / (I _{max} -I)) versus log [M ²⁺] for titration of Zn ²⁺ (a) and Cu ²⁺ (b)
	with $H_{12}L$ in CH ₃ OH/H ₂ O (40:60, v/v) solution indicating 1:1 complex formation.
Figure S2:	Fluorescence emission spectra of $H_{12}L$ in complexes with different substituents; 1-
	ligand (free ion) and complexes (2-Zn(SO ₄) ₂ , 3-Zn(NO ₃) ₂ , 4-Zn(CH ₃ COO) ₂ , 5-ZnCl ₂
	and $6-Zn(CO_3)$ in the solution phase at room temperature, respectively.
Figure S3:	Fluorescence emission spectra of $H_{12}L$ (1.5 x 10 ⁻⁴ M) in presence of Zn ²⁺ ion
C	(45µM) or EDTA (35µM) in CH ₃ OH/H ₂ O (40:60, v/v) solution at room
	temperature. Excitation was done at λ_{exc} = 370 nm.
Figure S4:	Reversible changes in fluorescence intensity of $H_{12}L$ at 484 nm after subsequent
C	addition of Cu ²⁺ and EDTA
Figure S5:	¹ H NMR titration plot of $H_{12}L$ (1) with Zn^{2+} (2 = 0.25 eq., 3 = 0.50 eq. and 4 = 1.0
	eq. of Zn^{2+}) ion in DMSO-d ₆ solvent.
Figure S6:	¹ H NMR titration plot of $H_{12}L$ in different pH. Different pH values are: (1) 5.5, (2)
C	6.0, (3) 7.0, (4) 8.0, (5) 9.0, (6) 9.5 and (7) 10.0.
Figure S7:	Fluorescence response of $H_{12}L$ in presence of Cu^{2+} with different concentrations at
_	different time. The concentrations of Cu ²⁺ (µM) are: (i) 10.0, (ii) 20.0 and (iii) 35.0,
	respectively.
Figure S8:	Truth table and the monomolecular circuit based on (a) Zn^{2+} and Cu^{2+} and (b) Zn^{2+}
U	with EDTA and EDTA with Cu^{2+} .
Figure S9:	DFT evaluated 3D isosurface HOMO and LUMO diagrams of $H_{12}L$, $H_{12}L$ - Zn^{2+} and
5	$H_{12}L$ -Cu ²⁺ complexes, respectively.

Figure S1: Plot of log ((I-I_o) / (I_{max}-I)) versus log [M²⁺] for titration of Zn²⁺ (a) and Cu²⁺ (b) with $H_{12}L$ in CH₃OH/H₂O (40:60, v/v) solution indicating 1:1 complex formation.

Figure S2: Fluorescence emission spectra of $H_{12}L$ in complexes with different substituents; 1ligand (free ion) and complexes $(2-Zn(SO_4)_2, 3-Zn(NO_3)_2, 4-Zn(CH_3COO)_2, 5-ZnCl_2$ and $6-Zn(CO_3)$) in the solution phase at room temperature, respectively.

Figure S3: Fluorescence emission spectra of $H_{12}L$ (1.5 x 10⁻⁴ M) in presence of Zn²⁺ ion (45µM) or EDTA (35µM) in CH₃OH/H₂O (40:60, v/v) solution at room temperature. Excitation was done at λ_{exc} = 370 nm.

Figure S4: Reversible changes in fluorescence intensity of $H_{12}L$ at 484 nm after subsequent addition of Cu^{2+} and EDTA

Figure S5: ¹H NMR titration plot of $H_{12}L$ (1) with Zn^{2+} (2 = 0.25 eq., 3 = 0.50 eq. and 4 = 1.0 eq. of Zn^{2+}) ion in DMSO-d₆ solvent.

Figure S6: ¹H NMR titration plot of $H_{12}L$ in different pH. Different pH values are: (1) 5.5, (2) 6.0, (3) 7.0, (4) 8.0, (5) 9.0, (6) 9.5 and (7) 10.0.

Figure S7: Fluorescence response of $H_{12}L$ in presence of Cu^{2+} with different concentrations at different time. The concentrations of Cu^{2+} (μ M) are: (i) 10.0, (ii) 20.0 and (iii) 35.0, respectively.

Figure S8: Truth table and the monomolecular circuit based on (a) Zn^{2+} and Cu^{2+} and (b) Zn^{2+} with EDTA and EDTA with Cu^{2+} .

Ι	OUTPUT	
IN1	IN2	OUT
Zn ²⁺	Cu ²⁺	Emission at 484 nm
0	0	0 (low)
0	1	0 (low)
1	0	1 (high)
1	1	0 (low)

(a) Zn^{2+} and Cu^{2+}

INPUT		OUTPUT
IN1	IN2	OUT
Zn ²⁺	EDTA	Emission at 484 nm
0	0	0 (low)
0	1	0 (low)
1	0	1 (high)
1	1	0 (low)
INPUT		OUTPUT
INPUT IN1	IN2	OUTPUT OUT
INPUT IN1 Cu ²⁺	IN2 EDTA	OUTPUT OUT OUT Emission at 484 nm
INPUT IN1 Cu ²⁺ 0	IN2 EDT A 0	OUTPUT OUT Emission at 484 nm 1 (high)
INPUT IN1 Cu ²⁺ 0 0	IN2 EDTA 0 1	OUTPUT OUT OUT Emission at 484 nm 1 (high) 1 (high)
INPUT IN1 Cu ²⁺ 0 1	IN2 EDTA 0 1 0	OUTPUT OUT Emission at 484 nm 1 (high) 1 (high) 0 (low)

(b) Zn^{2+} with EDTA and EDTA with Cu^{2+}

Figure S9: DFT evaluated 3D isosurface HOMO and LUMO diagrams of $H_{12}L$, $H_{12}L$ - Zn^{2+} and $H_{12}L$ - Cu^{2+} complexes, respectively.

