Near-infrared luminescence of Nd^{3+} and Yb^{3+} complexes using a polyfluorinated pyrene-based β diketonate ligand

T. M. George,^{a,b} S. Varughese,^b and M. L. P. Reddy^{a,b*}

^aAcSIR-Academy of Scientific & Innovative Research, CSIR-NIIST Campus, Thiruvananthapuram, India

^bMaterials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Thiruvananthapuram-695 019, India, E-mail: <u>mlpreddy55@gmail.com</u>

Contents

Synthetic procedure

- **1.** Synthetic procedure for the preparation of the complex $La(hfpyr)_3(H_2O)$.
- **2.** Synthetic procedure for the preparation of the complex $La(hfpyr)_3(bath)$.

Figures

Fig. S1 ¹H NMR spectrum of the ligand Hhfpyr.

Fig. S2 ¹³C NMR spectrum of the ligand Hhfpyr.

Fig. S3 ESI-MS spectrum of the ligand Hhfpyr.

Fig. S4 ESI-MS spectrum of the complex $Nd(hfpyr)_3(H_2O)$ 1.

Fig. S5 ESI-MS spectrum of the complex $Yb(hfpyr)_3(H_2O)$ 3.

Fig. S6 ESI-MS spectrum of the complex $Gd(hfpyr)_3(H_2O)$ **5**.

Fig. S7 ESI-MS spectrum of the complex Nd(hfpyr)₃(bath) 2.

Fig. S8 ESI-MS spectrum of the complex Yb(hfpyr)₃(bath) 4.

Fig. S9 FT-IR spectra for the ligand Hhfpyr.

Fig. S10 FT-IR spectra for the complex $Nd(hfpyr)_3(H_2O)$ **1**.

Fig. S11 FT-IR spectra for the complex $Nd(hfpyr)_3(bath)$ 2.

Fig. S12 FT-IR spectra for the complex $Yb(hfpyr)_3(H_2O)$ 3.

Fig. S13 FT-IR spectra for the complex Yb(hfpyr)₃(bath) **4**.

Fig. S14 FT-IR spectra for the complex $Gd(hfpyr)_3(H_2O)$ **5**.

Fig. S15 ¹H NMR spectrum of the complex La(hfpyr)₃(H₂O).

Fig. S16 ¹H NMR spectrum of the complex La(hfpyr)₃(bath).

Fig. S17 ESI-MS spectrum of the complex La(hfpyr)₃(H₂O).

Fig. S18 ESI-MS spectrum of the complex La(hfpyr)₃(bath).

Fig. S19 FT-IR spectra for the complex La(hfpyr)₃(H₂O).

Fig. S20 FT-IR spectra for the complex La(hfpyr)₃(bath).

Fig. S21 Thermogravimetric curves for complexes Nd(hfpyr)₃(H₂O) 1 and Yb(hfpyr)₃(H₂O) 3.

Fig. S22 Thermogravimetric curves for complexes Gd(hfpyr)₃(H₂O) **5**.

Fig. S23 Thermogravimetric curves for complexes Nd(hfpyr)₃(bath) 2.

Fig. S24 Thermogravimetric curves for complexes Yb(hfpyr)₃(bath) 4.

Fig. S25 Life time decay profile for complex Gd(hfpyr)₃(H₂O) 5 monitored at approximately 514 nm (λ_{ex} = 375 nm) at 298 K.

Fig. S26 Life time decay profile for complex Gd(hfpyr)₃(H₂O) 5 monitored at approximately 637 nm (λ_{ex} = 375 nm) at 77 K.

Fig. S27 Emission spectra for the ligand Hhfpyr, Nd(hfpyr)₃(H₂O) **1** and Nd(hfpyr)₃(bath) **2** in the visible range (λ_{ex} = 400 nm) at 298 K.

Fig. S28 Emission spectra for the ligand Hhfpyr, Yb(hfpyr)₃(H₂O) **3** and Yb(hfpyr)₃(bath) **4** in the visible range (λ_{ex} = 400 nm) at 298 K.

Fig. S29 FT-IR Spectra of the complex Yb(hfpyr)₃(bath), PMMA and PMMA film doped with complex **4.**

Fig. S30 Thermogravimetric curve for the PMMA film doped with Yb(hfpyr)₃(bath) 4.

Fig. S31 Life time decay profiles for Yb(hfpyr)₃(bath) **4**, doped into PMMA polymer where emission monitored around 979 nm. The straight lines are the best fits considering single-exponential behavior.

Synthetic procedure for the preparation of the complex $La(hfpyr)_3(H_2O)$.

To a methanolic solution of Hhfpyr (12 mmol), 12 mmol of NaOH in water was added and stirred for 5 min. $La(NO_3)_3 \cdot 6(H_2O)$ in 3 mL of water (4 mmol) was added dropwise to the above reaction mixture and stirred for 24 h at 298K. The resultant crude precipitate was filtered, washed with water and dried. The obtained metal complex was recrystallized from chloroform solution.

La(hfpyr)₃(H₂O). Elemental analysis (%): calculated for $C_{66}H_{32}F_{21}O_8La$ (1474.83): C 53.75, H 2.19; Found: C 53.68, H 2.28. ¹H NMR (CDC1₃, 500 MHz) δ (ppm): 8.49 (s, 3H), 8.02 (d, 18H), 7.40 (s, 3H), 7.02 (s, 3H), 6.51 (s, 3H). FT-IR (KBr) ν_{max} (cm⁻¹): 3424, 1611, 1512, 1345, 1229, 1153, 1066, 1033, 966, 847, 750, 667, 536. *m/z* = 1457.09 [La(hfpyr)₃+1]⁺.

Synthetic procedure for the preparation of the complex La(hfpyr)₃(bath)

The ternary La^{3+} complex was synthesized by mixing equimolar solutions of the corresponding binary complex and an ancillary ligand, bathophenanthroline (bath) in CHCl₃ solution and the resultant mixture was stirred for 12 h at 70°C. The metal complex was then isolated after the removal of solvent by evaporation process. Finally, the ternary lanthanide complex was obtained by recrystallization from chloroform solution.

La(hfpyr)₃(bath). Elemental analysis (%): calculated for $C_{90}H_{46}F_{21}N_2O_8La$ (1788.21): C 60.42, H 2.59, N 1.57; Found: C 60.53, H 2.66 N 1.48. ¹H NMR (CDC1₃, 500 MHz) δ (ppm): 9.57 (s, 2H), 8.72 (m, 3H), 8.13 (m, 4H), 8.08 (m, 3H), 7.99 (m, 5H), 7.84 (m, 6H) 7.48-7.37 (m, 17H), 6.99 (m, 3H) 6.49 (s, 3H). FT-IR (KBr) ν_{max} (cm⁻¹): 3037, 1608, 1541, 1511, 1464, 1343, 1262, 1227, 1029, 969, 849, 762, 668, 595. m/z = 1788.53 [La(hfpyr)₃(bath)]⁺.

Fig. S1 ¹H NMR spectrum of the ligand Hhfpyr.

Fig. S2 ¹³C NMR spectrum of the ligand Hhfpyr.

Fig. S3 ESI-MS spectrum of the ligand Hhfpyr.

Fig. S4 ESI-MS spectrum of Nd(hfpyr)₃(H₂O) 1.

Fig. S5 ESI-MS spectrum of the complex Yb(hfpyr)₃(H₂O) 3.

Fig. S6 ESI-MS spectrum of the complex $Gd(hfpyr)_3(H_2O)$ 5.

Fig. S7 ESI-MS spectrum of the complex Nd(hfpyr)₃(bath) 2.

Fig. S8 ESI-MS spectrum of the complex Nd(hfpyr)₃(bath) 4.

Fig. S9 FT-IR Spectra for the ligand Hhfpyr.

Fig. S10 FT-IR Spectra for the complex Nd(hfpyr)₃(H₂O) 1.

Fig. S11 FT-IR Spectra for the complex Nd(hfpyr)₃(bath) **2**.

Fig. S12 FT-IR Spectra for the complex Yb(hfpyr)₃(H₂O) **3**.

Fig. S13 FT-IR Spectra for the complex Yb(hfpyr)₃(bath) 4.

Fig. S14 FT-IR Spectra for the complex Gd(hfpyr)₃(H₂O) **5**.

Fig. S15 ¹H NMR spectrum of the complex La(hfpyr)₃(H₂O).

Fig. S16 ¹H NMR spectrum of the complex La(hfpyr)₃(bath).

Fig. S17 ESI-MS spectrum of the complex $La(hfpyr)_3(H_2O)$.

Fig. S18 ESI-MS spectrum of the complex La(hfpyr)₃(bath).

Fig. S19 FT-IR spectra for the complex $La(hfpyr)_3(H_2O)$.

Fig. S20 FT-IR spectra for the complex La(hfpyr)₃(bath).

Fig. S21 Thermogravimetric curves for complexes Nd(hfpyr)₃(H₂O) 1 and Yb(hfpyr)₃(H₂O) 3.

Fig. S22 Thermogravimetric curves for complexes Gd(hfpyr)₃(H₂O) 5.

Fig. S23 Thermogravimetric curves for complexes Nd(hfpyr)₃(bath) 2.

Fig. S24 Thermogravimetric curves for complexes Yb(hfpyr)₃(bath) 4.

Fig. S25 Life time decay profile for complex Gd(hfpyr)₃(H₂O) **5** in THF solution ($c = 1 \times 10^{-5}$ M) monitored at approximately 514 nm ($\lambda_{ex} = 375$ nm) at 298 K.

Fig. S26 Life time decay profile for complex Gd(hfpyr)₃(H₂O) 5 monitored at approximately 637 nm (λ_{ex} = 375 nm) at 77 K.

Fig. S27 Emission spectra for the free ligand Hhfpyr, Nd(hfpyr)₃(H₂O) **1** and Nd(hfpyr)₃(bath) **2** in the visible range (λ_{ex} = 400 nm) at 298 K.

Fig. S28 Emission spectra for the free ligand Hhfpyr, Yb(hfpyr)₃(H₂O) **3** and Yb(hfpyr)₃(bath) **4** in the visible range (λ_{ex} = 400 nm) at 298 K.

Fig. S29 FT-IR Spectra of the complex Yb(hfpyr)₃(bath), PMMA and PMMA film doped with complex 4.

Fig. S30 Thermogravimetric curve for the PMMA film doped with Yb(hfpyr)₃(bath) 4.

Fig. S31 Life time decay profiles for Yb(hfpyr)₃(bath) **4**, doped into PMMA polymer where emission monitored around 979 nm. The straight lines are the best fits considering single-exponential behavior.